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ABSTRACT

The state-of-the-art in Lagrangian methods for the grid-free simulation of three-dimensional,
incompressible, high Reynolds number, internal and/or external flows is surveyed. Specifically,
vortex and velicity (or impulse) element methods are introduced. The relative merits of various
available techniques and the outstanding challenges in simulating the processes of convection
and diffusion, as well as in satisfying the wall boundary conditions are discussed individually.
Issues regarding the stretch and solenoidality of vorticity are also discussed. A potentially
successful algorithm for simulating the flow around a parachute is proposed as well.
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OVERVIEW

This report presents results born the survey of available literature on grid-free methods
for the simulation of high Reynolds number incompressible flow in bounded three-dimensional
domains and, in particular, flow over parachutes; conducted for Sandia National Laboratories
under consulting agreement AV-0444.

The discussion of grid-free methods that are of potential interest to the simulation of
flow over parachutes can be classified into (1) Vortex Methods and (2) Velicity Methods.
Vortex methods are techniques for approximating the vorticity transport formulation of the
governing equations of fluid motion. These include the sub-classes of (1) vortex monopoles or
elements or vortons, (2) vortex flkunents or sticks, and (3) vortex-lattices or panels. Velicity
methods, also known in the literature as magnetization or impulse or dipole, are recently
developed techniques based on the Hamiltonian formulation of incompressible, inviscid fluid
flows.

The review of vortex and velicity methods that have been used in the literature to solve
the Navier-Stokes equations in 3-D bounded domains is simplified by focusing attention
individually on (1) the solution of the unbounded Euler equations, (2) the solution of the
unsteady diffusion equation, and (3) the effect of solid boundaries. These categorizations allow
a hierarchical approach ,for the evaluation of the merits and deficiencies of available methods,
and eliminate unnecessary duplication. For example, the discussion of accuracy and
convergence of vortex monopoles applies equally well to filaments and panels unless stated
otherwise. Similarly, because of the parallelism between the vorticity and velicity transport
equations, most techniques that have been’ developed in conjunction with vortex methods are
expected to be applicable to the velicity method unless stated otherwise.

Every attempt has been made in this survey to fid and present numerical evidence on
the accuracy and convergence properties of the presented methods. Particular emphasis has
been put on finding parametric studies that compare the accuracy of dif%erentmethods.

Only grid-free vortex and velicity methods are presented. Hybrid schemes are largely
ignored, with the exception of algorithms that are based on the Delaunay tetrahedralization.

, Articles that discuss 2-D technologies are included in this report only ~ the ideas show promise
and can be extended to 3-D. This is particularly true when dealing with the solution of the
unsteady diffusion equation and the application of the no-slip boundary condition, which have
mostly been attempted in the literature in 2-D space.

A deliberate attempt has been made to reduce the number of “unnecessary” references in
the report. For example, if a particular subjectitechnology by an author appears in more than
one publication, only one is cited. Also, publications that involve the implementation of a
known technology to study physics, rather than numerics, have largely been ignored.



LITERATURE SEARCH STRATEGY

The literature search was conducted for the period starting from 1980 to the present.
This is justified because simulation of complex three-dimensional flow phenomena using the
Lagrangian vortex and/or velicity (magnetization) methods is a relatively recent enterprise,
perhaps dating back 15 years. Furthermore, what might have been the state-of-the-art just a

decade ago may simply be obsolete today. This Wowed the use of electronic databases for
carrying out the search, which enhanced the quality md speed of the survey tremendously.

The literature search was conducted using the following electronic databases:

1. Compendex Plus; a comprehensive collection of abstracts tiom engineering and
technology related journals and conference proceedings,

2. Inspec; a database for physics, electronics and computing related journals and
conferences,

3. MathSc~ a reference material for mathematics and computing,
4. Aerospace; a database for journals and conference proceedings related to

aeronautics and astronautics, and
5. NTIS; a database for U.S. government sponsored research and development.

A three-pronged approach was taken to conduct the literature search. Firstly, the
databases were searched for selected keywords. Secondly, the references in the reviewed
articles were examined for new leads. Thirdly, yet-unpublished papers were solicited directly
from researchers who have been contributing significantly to the development and
implementation of new, more accurate 3-D vortex and velicity methods in recent years. The
keywords used to search for articles on vortex methods were vort*.AND.(meth* .OR.simul*).
For the velicity method, the keywords used were
(vefic*.OR.mgnet* .OR.&pol*.OR.@uke).~. (meth*.OR.stiul*). (* means wild card.)
Articles on two-dimensional flow were included in the searc~ however, only relevant topics -
judged horn the abstracts - were selected for the review process.



A SURVEY OF GRID-FREE METHODS FOR THE SIMULATION OF

3-D INCOMPRESSIBLE FLOWS IN BOUNDED DOMAINS

1 VORTEX METHODS

1.1 Introduction

Lagrangian vortex methods are approximation techniques for the simulation of the
unsteady, incompressible, Euler or high Reynolds number Navier-Stokes equations in
unbounded or bounded domains. “Bounded domains” implies internal or external flow
configurations with any combination of boundary conditions. In this approach, the governing
equations are expressed in the vorticity transport formulation. The vorticity field is discretized
using a collection of vortex elements which are identified by the strength and the direction of the
local vorticity. The convection of the vorticity field is evaluated in the Lagrangian frame of
reference by tracking the trajectory of the elements due to the local velocity. Additionally, the
strengths and the directions of the vortex elements are updated to account for difksion, as well
as stretch due to the interaction of the vorticity with the local velocity gradients. In vortex
methods, the velocity field in a bounded flow domain is expressed as the superposition of a
vertical velocity component in an unbounded domain and a “corrective” potential velocity such
that the normal velocity flux boundary condition is imposed at the boundaries of the domain
(LighthiJl, 1963; Batchelor, 1967). This velocity field produces a residual tangential velocity at
the solid walls, which is different from the applied no-slip boundary condition. The observed
jump in the tangential velocity is equiwdent to the amount of vorticity that must be generated at
the wall to satis& the no-slip boundary condition (Lighthill, 1963; Batchelor, 1967; Chorin,
1978). The task is then to relate the velocity jump to the boundary vorticity and to devise a
mechanism for transporting the generated vorticity into the domain interior.

Three-dimensional inviscid flows were first simulated using a vortex filament approach
(Hama, 1962; Leonard, 1980, 1985), which is an excellent candidate for solving the Euler
equations in unbounded domains. In this model, a collection of filaments, each forming a closed
vortex line and segmented along the vorticity vector, is used to approximate the initial vorticity
field. By construction, Kelvin%theorem for the conservation of circulation is implicitly satisfied
in this scheme.



Beale & Majda (1982) proposed extending the notion of the two-dimensional vortex
element to a three-dimensional element with spherical core function, and provided mathematical
proof for the existence of solutions for short times. However, in this approach the velocity
gradients, used to compute vorticity stretch, were obtained by a finite difference approximation,
which contradicted the spirit of grid-free Lagrangian techniques. Anderson & Greengard
(1985) alleviated this problem by differentiating the regularized kernel for the velocity in the
Biot-Savart integral directly to obtain the regularized kernel for the velocity gradients. The
convergence of the latter was subsequently proved by Beale (1986).

Vortex methods offer some significant advantages. To begin with, due to the
Lagrangian nature of the computations, convection is approximated with minimal numerical
d.iftision, making the scheme an excellent tool for simulating high Reynolds number flows. In
addition, vortex methods are generally grid-free and thus eliminate the often tedious task of
meshing the volume of complex three-dimensional domains. This advantage is even more
pronounced in situations where moving boundaries are encountered, and in unsteady flow
topologies where the envelope of the vorticity field changes in time. Vortex methods are self-
adaptive and capable of dynamically concentrating computational elements in regions with
significant vorticit y, such as in wakes, jets and shear layers. Furthermore, vortex methods are
naturally adaptable to massively parallel computing, which can be exploited to solve large scale
problems efficiently. Finally, vortex methods readily facilitate an intuitive and quantitative tool
for interrogating “three-dimensionality effects” in the flow by monitoring vorticity stretch in the
field. This is an immediate consequence of representing the Navier-Stokes equations in the
velocity-vorticit y formulation, where the three-dimensional equations are distinguished from
their two-dimensional counterpart by the extra vorticity stretch term.

At present, three-dimensional vortex methods present a few computational challenges
which need to be addressed with more rigor. Firstly, the most widely used and flexible class of
vortex methods - vortons - which use vortex monopoles to discretize the three-dimensional
vorticity field, do not implicitly guarantee the solenoidality of the discretized vorticit y in space
and time. Neither do they necessarily preserve flow invariants, such as linear and angular
momenta, helicity or energy. Consequently, the accumulation of errors leads to the eventual
blow up of the simulations at long times. (This issue will be addressed in more detail in the
following sections.) Secondly, the cost for evaluating the vortex element velocities using
traditional summation techniques grows quadratically with the number of elements. This
imposes a severe limitation on the maximum number of ‘elements that can be used in a
simulation. Fortunately, fast multipole expansion techniques are now available, which achieve
near-linem CPU dependence on the number of elements (Buttke, 1990; Greengard & Rokhlin,
1987; Winckelmans et al., 1996). Furthermore, parallelization of the velocity evaluations by the
direct or fast summation methods speeds up the computations considerably (Gharakhani &
Ghonie~ 1996; Winckehnans et al., 1996). Nevertheless, physically correct and numerically
accurate vortex element merging algorithms may still be necessary to limit the proliferation of
the number of elements in time (Buttke & Chorin, 1993; Chorin, 1993).

The proper choice for boundary conditions is perhaps the most challenging and
controversial issue in the application of the vorticity transport formulation of the Navier-Stokes
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equations to bounded domains. At the rudimentary level, the vorticity-based equations are
expected to require compatible vofi”city boundary conditions, whereas the Navier-Stokes
equations admit the natural boundary conditions of no-slip and no-flux at solid walls.
Consequently, one must reconcile the differences between the natural (velocity) boundary
conditions and the derived boundary conditions for the vorticity by addressing the physics of
vorticity generation at the walls and diffusion into the fluid. Unfortunately, the iimdamental
physics of the vorticity generation mechanism at solid walls are not well-understood. Morton
(1984) points out that a thorough discussion of boundary conditions is absent in virtually all
fluid mechanics textbooks that discuss vorticity dynamics - notable exceptions being the books
by Lighthdl (1963) and Batchelor (1967).

Indeed, there even seems to be disagreement (and coniision) among fluid dynamicists
on whether vorticity generation is an inviscid or a viscous process. Morton (1984) and Merino
(1986), using the generalized Biot-Savart formula of Wu & Thompson (1976), make the
controversial assertion that vorticity generation at the wall is an inviscid process and that the
no-slip boundary condition cannot provide a mechanism for the generation of vorticity! Merino
(1986) further concludes that only the normal boundary conditions are necessary to establish the
flow field. Wu & Wu (1993) argue that this conclusion is erroneous, and show that if the fluid
is assumed to be truly inviscid, the jump in the tangential velocity ffom the fluid to the solid
does not create any rotation of fluid particles and there is no no-slip - the fluid particles simply
slide on the wall. On the other hand, if the inviscid flow is assumed to be the limiting case of
the viscous flow with viscosity approaching zero, then the no-slip condition becomes
meaningful and the tangential jump from the fluid to the solid creates singular vorticity. In other
words, vorticity generation and viscosity are interlinked.

In addition to the debate over the inviscid versus viscous nature of vorticity generation,
there are other characteristics of the vorticity boundary condition, with significant
computational consequences, that remain unresolved. For example, is vorticity generation a
local effect or is it linked globally to all other points on the boundary? Is the boundary vorticity
a kinematic Iimction of the boundary velocity and stream function or is it determined
dynamically via the Navier-Stokes equations at the wall? Should one apply a Dirichlet boundary
condition or a Neumann boundary condition for the wall vorticity?

In order to express the boundary vorticity in terms of the corresponding velocity
boundary conditions, one may apply the generalized Biot-Savart law developed by Bykhovskiy
& Smirnov (1983) and independently by Wu & Thompson (1973), Wu (1976, 1984), and Wu &
Gulcat (1981). Alternatively, one may use the method of projection developed by Quartapelle
(1981) and Quartapelle & Valz-Griz (1981). In the case of the former formulation, the
kinematic definition of the vorticity (as the curl of the velocity) along with the incompressibility
constraint are manipulated to obtain an integral equation that relates the velocity field to the
corresponding vorticity field, inclusive of the boundary. Additionally, conservation of vorticity
is imposed as a supplemental global constraint. In the discretized fo~ either the normal or the
tangential velocity boundary conditions may be used to form a linear set of equations that solves
for the vorticity distribution on the surface. Note that Wu (1976) insists that the global
conservation properties of the flow must be imposed explicitly. Kempka et al. (1995) have



recently re-investigated the generalized Biot-Savart formula and have shown that the global
conservation properties are satisfied implicitly in the derivation. Furthermore, they showed that
either the tangential or the normal boundary condition would be sufficient to obtain a solution.
However, while the conclusions by Kempka et al. (1995) may be correct in the continuous
sense, numerical experiments by Uhlman & Grant (1993) suggest that both boundary conditions
as well as the explicit satisfaction of the global constraints may be necessary in the discretized
form.

The method of projection was developed based on the observation that the statement of
the problem in terms of the Poisson equation for the vorticity-streamfimction - using boundary
values for the streamfunction and its flux - will generally not yield an exact formulation for the
boundary vorticity, unless the evaluated vorticity is projected onto a new field that satisfies a
global compatibility condition. This global condition is obtained by applying Green’s second
identity to the product of the vorticity field and an arbitrary scalar potential field. Anderson
(1989) proposed an equivalent but more economical approach to the projection method by
satisfying the global compatibility condition at time zero and by maintaining a zero time rate of
change of the constraint in subsequent times. This requirement on the time derivative leads to
an explicit integro-dii%erentialboundary condition for vorticity, and hence to the formulation of
a new scheme for vorticity generation. Anderson (1989) also showed, without a rigorous
proof, that the vorticity generation scheme by Chorin ( 1978) -to be discussed later -is a special
case of boundary conditions which impose the time-constrained evolution of vorticity that is
generated at the wall due to the no-slip boundary condition.

Note that the Biot-Savart formulation as well as the projection method are kinematic in
nature. Furthermore, they hnplement global integral constraints which link the boundary
vorticity at each point to all other points on the boundary. Until recently, the vorticity boundary
condition was accepted to be of the global type (Wu, 1976; Hung & Kinney, 1988; Gresho,
1991; Wu et al., 1994), thus making its implementation in a local algorithm diflicult and
expensive. However, using a finite-difference argument, E & Liu (1996) showed that many of
the recently developed global methods can actually be rewritten into local formulae. They also
proposed a general recipe for converting the discrete form of the time-constrained global
boundary condition by Anderson (1989) into a local one. Casciola et al. (1996) derived a
boundary integral equation for the three-dimensional vorticity source at the wall, starting from
the generalized Biot-Savart formula for the velocity and the generalized integral solution of the
diffi.wionequation. They showed that, at least for a flat plate, the wall vortex sheet is a
consistent approximation of the vorticity source; thus, further verifying that the boundary
conditions can be enforced via local procedures. It must be noted here that the convergence of
the Navier-Stokes equations using the (kinematic) vorticity boundary condition was proved by
Hou & Wetton (1992).

In contrast to the kinematic boundary conditions mentioned above, Lighthill (1963)
proposed a dynamic model for the rate of vorticity production and showed that the pressure
gradient along a stationary wall is equal to the normal flux of the tangential vorticity at the wall.
However, he did not elaborate on the connection between the vorticity flux and the strength of
the boundary sheets. This was later accomplished by Kinney & Paolino (1974) who showed
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that, for the case of flow over a flat plate, the slip velocity at the wall is proportional to the time
integral (over an interval) of the normal flux of vorticity at the wall - the proportionality
constant being the kinematic viscosity. The development by Koumoutsakos et al. (1994) is
based on this formulation. Wu & Wu (1993) have developed a generalized theory for the
dynamics of the interaction between a viscous compressible flow field and a three-dimensional
rotating and translating curved body. They showed that the fluid dynamics of such an
interaction can be decomposed into a pair of Stokes-Helmholtz potentials of the Navier-Stokes
equations as a normal compressing process, represented by the pressure field in case of an
incompressible flow, and a tangential shearing process, represented by vorticity. They showed
that the solid surface and the boundary condition of acceleration adherence cause the coupling
of vorticity and pressure in the form of a boundary flux due to the tangential gradient of the
normal stress and vorticity. Furthermore, they showed the existence of a vorticity-vorticity
coupling, which is peculiar to 3-D flows only and plays the important role of vorticity
generation near regions of flow separation. Based upon this dynamic vorticity-pressure theorem
Wu et al. (1994) showed that the Neumann boundary condition by Kinney & Paolino (1974)
and Koumoutsakos et al. (1994) can exist only in an approximate sense and as a special case of
their theorem. They also provided an efficient algorithm for decoupling the vorticity and the
pressure for high Reynolds number flows. Note that the effectiveness of this decoupling may
suggest that the proposed vorticity-pressure theorem may have only higher order contributions
to the flow structure and that the approximate boundary conditions may be sufficient in many
practical problems.

The various approaches that have thus far been presented for accounting boundary
effects manifest themselves as either a Dirichlet or a Neumann boundary condition. It is not
obvious which is correct or is at least a better representative of the natural boundary condition.
Wu et al. (1994) argue that “in the vorticity-based methods it is impossible to obtain a strict
Dirichlet or Neumann condition for the vorticity equation.” In this sense, they agree with
Gresho (1991) that there are no boundary conditions on the vorticity. Hung& Kinney (1988)
point out that, at least in terms of numerical implementation, the results obtained by the two
boundary conditions are different only by a scaling factor. That is, if the time increment used
with the Neumann boundary condition is set equal to the time that it takes for the new total
vorticity (obtained by the Dirichlet boundary condition) to diffuse into the nearest normal nodal
point from the surface, then the two methods will produce nearly identical results.

It is clear from this brief introduction that a much deeper understanding of vorticity, its
inception at the boundary and transport into the fluid interior is necessary. Nevertheless, it is
interesting that despite fundamental dMerences between competing models that have been
implemented computationally to satisfy the vorticity boundary condition, the differences in
accuracy of the solutions seem to be quite minimal. Indeed, in the absence of a controlled set of
numerical experiments, such differences may even be attributed to factors other than the
particulars of the boundary conditions used.

Excellent introductory surveys of various three-dimensional vortex methods are
available in the literature (Hoeijmakers, 1983; Leonard, 1980, 1985; Pucket, 1992). For a more
complete review of vorticity-based boundary conditions refer to Gresho (1991).



1.2 Formulation

The equations of motion of an incompressible viscous fluid in a bounded three-
dimensional domain, D, with boundary, all, maybe expressed in the vorticity transport form of
the Navier-Stokes equations as:

(1.2.1)

V.u=o xED (1.2.2)

(D(X,t)= vu xGD (1.2.3)

U(x, t =O)=Z40 xeD (1.2.4)

U(x, t)=(U “Iu”p,zf”n) xEdD (1.2.5)

where x = (x,Y,z) is the position vector in Cartesian coordinates normalized by a reference

length, L; u(x, t) = (u,v, w ) is the velocity vector normalized by a characteristic speed, U, t is the

time normalized by L/U ; (D@,t) = (OZ,OJ,,ttlz) is the vorticity vector normalized by U/L;

R. = UL W is the Reynolds number, and v is the kinematic viscosity. Superscripts T and A

denote the transpose and the cross-product operations, respectively. At the boundary surfaces,
the velocity is expressed in terms of the local orthogonal coordinate system z – ~ – n, where
n = (nX,nY,rZZ) is the unit outward normal, and T= (TZ,TY,TZ)and P =( f)X,PY,P,) are the unit

tangents to the boundary. ct is a variable that casts the stretch term into three possible
formulations. (X=1corresponds to the standard fo~ cx= Oyields what is called the
transpose fo~ and (X= 1/2 leads to a mixed symmetric form of the stretch term. The effect of

a on the accuracy of the predictions will be discussed in the following section.

The last term in Eq. (1.2.1) results from taking the curl of the Navier-Stokes equations
in the primitive variable formulation and using vector identities to sirnp~ further. It is left
intact intentionally and will be discussed shortly. For now, suffice it to say that the more

‘ familiar form of the Navier-Stokes equations (with the term removed) is valid only when the
solenoidality of vorticity is satisfied everywhere in the domain (Gharakhani, 1993).

Simulation of the Navier-Stokes equations by Lagrangian vortex element methods
generally comprises the sequential solution of the Euler and diffusion equations (Chorin, 1973).
This is the so-called viscous splitting algoritm and it provides the flexibility to concentrate on
the solution of the simpler problems of Euler and diffusion equations individually and to develop
hybrid algorithms with arbitrarily high degrees of accuracy and stability. The convergence of
solutions using viscous splitting has been proved by Beale & Majda (1981) for unbounded
domains. There is ample numerical evidence that the algorithm works quite well in bounded
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domains as well. The standard viscous splitting approach (Euler+Diffusion) has been proved to
converge uniformly at a rate that is proportional to At/R, , where AZ is the computational

tirnestep. A Strang-type splitting algorithm (Diffusion+Euler+Di.fhsion) with convergence rate
proportional to At2/Re has also been proposed.

Application of viscous splitting to Eq. (1.2.1) yields the following pair of Euler and
diffbsion equations, respectively

h~+u”vmm”vu+(l-cx)ci)”~uy xED (1.2.6)

&Ill
~=yv. xCD (1.2.7)

where the last term in Eq. (1.2. 1) is removed for the sake of simplicity.

The velocity in the above equations can be decomposed into a vertical field, U., and a

potential component, u,, according to the Helmholtz decomposition rule (Batchelor, 1967):

u =Um+Up (1.2.8)

The vertical field is obtained using the familiar Biot-Savart formula for an unbounded
domain. The potential velocity is obtained by evaluating the gradients of a potential field that
defines the geometry in question. This is done by solving a Neumann problem in which the
normal flux boundary condition for the potential accounts for the effect of the vertical velocity
on the boundary using Eq. (1.2.8). The superposition of the vertical and potential components
yields a velocity field that satisfies the normal flux boundary condition but violates the no-slip
boundary condition. The latter is satisfied by positioning an infinitesimally thin vortex sheet on
the boundary with its magnitude equal to the magnitude of the observed jump in the tangential
velocity. Refer to Gharakhani & Ghoniem (1997a) for a detailed description of the solution
methodology. An equivalent generalized Biot-Savart formulation including the effects of the
no-flux and no-slip boundary conditions was derived by Wu & Thompson (1973). The
following is an alternative interpretation proposed by Kempka et al. (1995):

u(x) =v&x’)G(x, x’)W(x’)+
D

~~[YJXL) -n(X; )AU,(X;)l@,X;)dMX;)+

v~:n(x~ ) ou, (x; )]G(x,x~ )ti(X; )
aD

where dV is an elemental fluid volume, dS is an elemental boundary surface, G is the Green

(1.2.9)

fimction in the infinite domain, and the subscript b implies a

represents a vortex sheet that is created at the boundary to

point on the boundary. YC

satis~ the no-slip boundary



.

condition. Note that the first integral represents the vertical velocity in the infinite domain,
whereas the remaining surface integrals - with the exception of the term involving y= - represent

the potential velocity.

In vortex element simulations, in which S-distribution functions are used to discretize the
vorticity field, the singularity of the velocity kernel gives rise to numerical instability and the
solution blows up when vortex elements approach each other. Chorin (1973) removed this
velocity singularity at the center using a “vortex blob” regularization technique. This was later
interpreted as the convolution of the singular vortices with a smoothing function, or the use of
finite area elements whose vorticity remains concentrated within a finite size core radius and
decays rapidly outside it.

Vortex blob discretization of the vorticity field using ZVvvortex elements - each with
volumetric vorticity ~ = O)(xi,O)h3 and centered at xi - is represented by

(D(X,t)=~q(t)~(x –xi) (1.2.10)
is1

where h is the inter-element distance and fc (x ) = ~ ~(lxl/0) k a smoothing or core function

with core radius cr. Substituting (1.2. 10) into the Lagrangian equivalent of ( 1.2.6) and (1.2.7)
yields the final form of the evolution equations in 3-D vortex element methods:

*
=Ui

dt
q?= o) =X. (1.2.11)

~ =~ wui+(l-c%)~ .(vui)’ ri(t = O) = r. (1.2.12)

i=l , .... NV (1.2.13)

Equations (1.2. 11) through (1.2. 13) are vectorial ordinary differential equations which
can now be integrated in time to any order of accuracy to obtain the trajectory of the blobs and
the evolution of the vofiicity due to stretch and diffusion. The velocity gradients in Eq. (1.2.12)
may be evaluated by any numerical method. The current trend is the method of direct
differentiation of the velocity kernel by Anderson & Greengard (1985).

1.3 The Euler Equations

1.3.1 Vortex Monopoles

The convergence of vortex “blob” simulations to Euler and Navier-Stokes equations has
been studied extensively for 2-D domains, and to a lesser degree for 3-D. Beale & Majda



(1982a, 1982b) were the first to prove the convergence of the 3-D vortex simulations to the
Euler equations for short times. In their approach, they superimposed a set of grids on the
computational domain and used finite difference methods to evaluate the velocity gradients in
the field. Later, Anderson & Greengard (1985) proposed the alternative of differentiating the
velocity kernel directly to evaluate the velocity gradients. The proof of convergence was
subsequently provided by Beale (1986) and further improvements in the analysis were given by
Cottet (1988). At present, this approach is the most prevalently implemented technique in grid-
free methods. Briefly, the convergence rate of the particle paths using an m-th order, k times

continuously differentiable spherical core finction with radius o is O(0” + (h/(J~ 6). This

suggests that in order for the method to converge we must have a vanishingly small core radius,
subject to condition (h/cT)< 1;i.e., neighboring cores must overlap everywhere in the domain

and at all times. Lung-An (1995) has proved the convergence of vortex methods for 3-D Euler
equations in bounded domains.

Anderson & Greengard (1985) have also studied convergence due to temporal
discretization. For a class of explicit multi-step Adams-BasMorth methods with local truncation

errors in the order of r+ 1, they showed the convergence rate to be O(&’). Additionally,

Anderson & Greengard ( 1985) proved that the modified Euler method converges quadratically.
For a concise review of the convergence properties of vortex methods refertoHald(1991).

In order to improve the convergence rate, Hald (1987) and Nordmark (1996) have
developed high-order core fi.mctions,while Bea.le& Majda ( 1985) have proposed a technique to
construct arbitrarily high-order core fimctions horn a given list of lower order ones. However,
numerical implementation and testing of various high-order core finctions have revealed that
the computed convergence rates agree with theory only initially, and the errors caused by severe
vorticity smearing, for example, lead to suboptimal performance quickly (Beale & Majda, 1985;
Perhnan, 1985). This loss of accuracy in long time simulations (of even 2-D flows) is a serious
deficiency of grid-free methods and an active area of research. One idea put forth by Beale &
Majda (1985) is the periodic regrinding or rezoning of the vorticity field. Regrinding has been
shown to improve long time predictions (Bernard, 1995; Winckehnans & Leonard, 1993);
however, it eliminates two of the most attractive advantages of Lagrangian vortex methods: ( 1)
it inevitably introduces numerical diffhsion, and (2) it uses grids to project the vorticity field
onto uniformly distributed collocation points ! Beale (1988) proposed an alternative method for
improving the long time solution accuracy without having to resort to regrinding. In Eq.
(1.2. 10), vorticity was formerly initialized using the relation ~(0)= (D@,,0)h3 to assign the

field vorticity to the vorticity at a collocation point i. This effectively assumes a point-wise, &
distribution of vorticity and ignores the influence of the core functions from the neighboring
elements. In the new method, Beale (1988) suggested assigning the field vorticity to the left
hand side of Eq. (1.2. 10) and inverting the resulting matrix to obtain ~.(0) at collocation points

i. This approach improves the quality of long time solutions significantly (Knio & Ghonie~
1990, 1991; Winckelmans & Leonard, 1993). Marshall & Grant (1996) have proposed and
tested an improved matrix inversion technique that effectively cuts off high-frequency
oscillations fi-omthe inversion process and leads to even longer time solution accuracy. Strain
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(1996) has recently devised a fast adaptive vortex method for the 2-D Euler equations which
utilizes the free-Lagrangian formulation, an adaptive quadrature rule for the Biot-Savart
summations, the fast multipole method, and a non-standard error analysis technique to obtain
long-time arbitrarily high order accuracy at asymptotically optimal cost. The key here is to
apply time-dependent quadrature weights that adapt to the flow map; traditional vortex methods
use fixed weights which do not take flow disorganization into consideration. At present, the 3-
D equivalent of the method is not available (Strain, 1997).

Hurni (1993) analyzed the spectral dependence of vortex methods on the choice of the
core function and showed that the infinite order core fi.mctionby Hald (1987) and higher order
fi.mctions by Beale & Majda (1985) have fixed spectral range of accuracy. Therefore, he
argued, a large number of vortex elements will be necessary in order to capture the required
scales of the flow accurately. He developed a core function that gives the user control over the
spectral accuracy of the predictions, and used it to predict the drag over a 2-D plate. He
showed that for a Iixed number of vortex elements the increase in the core wave-number
improves the drag prediction significantly. This appears to be one promising approach to
reduce the total number of elements for a particular resolution.

Alternatives to the traditional vortex elements with spherical core functions have also
appeared in the literature. Hou (1992) and Hou et al. (1993) reintroduced point vortex
methods, without core functions, in 3-D and showed the predictions to maintain long time
accuracy! The idea was to apply a novel exact desingukuization technique that reduces the
order of the singularity in the Biot-Savart kernels by one, and thus makes the quadrature (the
summations) more stable. Cottet et al. (1991) proved the method to be stable and convergent
to second order accuracy in 3-D space. Marshall & Grant (1995a) developed an approximate
method for determining the induced velocity Iiom highly anisotropic 3-D vorticity blobs.
Anisotropic elements are highly useful in discretizing boundary layer and wake-type flows
where the variation in the vorticity is more across the thin layer of the flow than along it. As a
result, the computational domain can be discretized using substantially fewer number of
elements. Marshall & Grant (1995a) claimed several orders of magnitude reduction in the
number of elements for 3-D simulations! Grant et al. (1995) have embarked on the
development and testing of a code that is based on the advancing ftont idea and the Delaunay
triangulation method proposed by Russo & Strain (1994). In this approach, new tetrahedral
elements are generated on solid boundaries and their vertices convected with the local velocity
in the Lagrangian fiarne of reference. Vorticity is assumed to be constant within each control
volume which allows the exact integration of the Biot-Savart formula.

It has been known for some time now that vorton simulations of the standard 3-D Euler
equations - cx= 1inEq. (1.2.6) or (1.2.12) - are unstable (Choquin & Huberson, 1990;
Winckelrnans & Leonard, 1993). The source of instability has been attributed to vorticity
stretch and the fact that (1) vortons do not preserve the basic invariants of the flow represented
by ~ =1, including the total vorticity, and (2) Eq. (1.2.12) does not form a weak solution of
Eq. (1.2.6) (Sai%nan & Meiron, 1986; Winckelmans & Leonard, 1993). In an attempt to
improve the stability of the simulations, two alternative representations of the vorticity stretch -
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u = O and cx= 1/2 derived by Rehbach (1978) - have been analyzed and numerically tested in
the past (Beale et al., 1991; Choquin & Cottet, 1988; Choquin & Huberson, 1990; Greengard
& Thornann, 1988; Knio & Ghonie~ 1991; Winckehnans & Leonard, 1988, 1993). Note that
for the continuous solenoidal vorticity field all three forms of the stretch term are identicd,
however, since vorton simulations are only approximately divergence-flee, we can expect
differences in the accuracy and stability of the predictions. Simulations using (X= 1/2 were
preferred by Rehbach ( 1978) because the symmetry of the formulation resulted in computational
savings. This case does not preserve the invariants of the flow, neither does it lend itself to a
weak solution of Eq. (1.2.6) (JMnckehnans & Leonard, 1993). The case with u = O - the
transpose method - has been shown to preserve total vorticity (Choquin & Cottet, 1988) as well
as form a weak solution of the Euler equations (Winckehnans & Leonard, 1988). Therefore,
one may expect the transpose method to be superior to the other two. Unfortunately, unlike the
standard method which has the propensity to maintain the solenoidality of an initially
divergence-free vorticity field, the transpose method destroys this solenoidality (Cottet, 1996).
Certainly, results from the theoretical analyses are inconclusive as to which of the three methods
is superior, and one must resort to numerical experimentation and comparison with available
data to select the more robust method. Using a test problem of two colliding vortex rings,
Winckelmans & Leonard (1993) concluded that the transpose method is superior. Choquin &
Huberson (1990) computed the Norbury (1973) steady problem and arrived at a similar
conclusion. On the other hand, in a study of the evolution of an initially two-dimensional shear
layer, perturbed in the strearnwise and spanwise directions, Knio & Ghoniem (1991) concluded
that the standard method is superior. Beale et al. (1991), using the test problem of a vortex ring
with swirl, concurred with the latter. The fact that the computations are as inconclusive as the
analyses may actually suggest that the currently prevailing hypothesis about the source of the
numerical instability in 3-D; i.e., the stretch te~ may be inaccurate or incomplete. Greengard
& Thomann (1988) pointed out that systems of singular vortex elements cannot form weak
solutions of the Euler equations because the non-linear term is not defined in the distribution
sense. Thus, they argue, the conclusion made by Winckelmans & Leonard (1988) about the
existence of weak solutions for the transpose method is not general and depends on the specific
choice of the regularization. Furthermore, Pedrizzetti (1992) notes that vortons not
representing a weak solution of the Euler equations has little bearing on the validity of the
method as an operative tool. Greengard & Thornann (1988) and Pedrizzetti (1992) conclude
that vortons maybe a poor choice for solving Euler equations not because they don’t preseme
the invariants of the flow, but because they are not divergence-fhx! (The fact that divergence-
free vortex filament methods can successfidly simulate vortex ring instabilities, with severe
stretch, may bean indirect confirmation of the latter conclusion.) It is worth recalling that all 3-
D convergence studies implicitly assume the solenoidality of the vorticity field.

The problem of maintaining the solenoidality of the vorticity field is currently an active
area of research. Pedrizzetti (1992) devised a linear filtering feedback procedure which
reconstructs a divergence-fkee vorticity field from the non-solenoidal computations. The
frequency of this tuning is scaled with the physical phenomenon under study. This model is
implicitly dissipative; nevertheless, improvements in the stability of the solutions were observed.
Winckehnans & Leonard (1993) reconstruct the solenoidal vorticity field by setting the left hand



side of Eq. (1.2. 10) to the divergence-fkee representation of the vortons (Novikov, 1983) and
by solving a system of equations for the volumetric vorticity of the elements, ri. They show
marked improvement in the stability of the predictions with this approach. Interestingly, the
invariant of the flow are better presemed as a result of “enforcing” the solenoidality of
vorticity. In unpublished work, Gharakhni (1993) argued that the continuous form of the
Euler equations, in their familiar fo~ explicitly assume solenoidality of vorticity and thus
remove the last term in Eq. (1.2. 1). However, if vorticity is non-solenoidal, as in the case of the
vorton approximation, the last term in (1.2.1) must be included to keep the correct balance
between the rate of change of vorticity on the left sides of ( 1.2.1) and vorticity stretch on the
right. The failure to correctly keep the balance leads to the growth of vorticity and eventual
numerical blow up. Additionally, taking the divergence of Eq. (1.2. 1), it was shown that the
rate of change of the divergence of vorticity is zero everywhere in the field when the last term is
included. This implies that an initially solenoidal vorticity field made up of vortons will remain
solenoidal at all times. In contrast, when the last term in Eq. (1.2.1) is discarded, the rate of
change of the divergence of vorticity remains zero only on the Lagrangian path of the vortons.
This simple method was shown to maintain very long time stability using the test problem of a
self-propelling vortex ring. The idea was recently published by Cottet (1996) subsequent to
private conversations with Gharakhani. Wu et al. (1995) proposed a novel projection method
for recovering the solenoidality of the vorticity field in bounded domains, which will be
discussed in Section 1.5.

1.3.2 Vortex Fiiizments

The vortex filament method is a special sub-class of the generalized Lagrangian vortex
element methods and is best utilized in the study of 3-D flow phenomena ‘with inviscid
unbounded domains. Examples of typical problems that vortex filaments perform extremely
well are the study of vortex ring instability (Knio & Ghonie~ 1990), shear and mixing layers
(Ashurst & Meiburg, 1988; Inoue, 1989; Knio & Ghonie~ 1991), jets (Martin & Meiburg,
1996) and wing-tip vortices (Bliss et al., 1987).

The premise of the vortex filament method is the realization that the evolution of an
infinitesimal line element satisfies an equation that is identical to Eq. (1.2.6) with C%=1
(Batchelor, 1967). Therefore, for an inviscid motion, vortex lines move as material lines
(Helmholtz’s Theorem.) Furthermore, in inviscid flow, the circulation of a vortex tube (a
bundle of vortex lines) remains constant in time (Kelvin’s Theorem.) Thus, a tube of vorticity
retains its identity as it moves with the fluid.

In the vortex filament approach, the curve that defines a vortex line is discretized using a
set of contiguous vector segments (or sticks) along the curve, and by assigning its circulation
value to the sticks. Therefore, the tail node of one segment is connected to the head node of the
next segment. Similarly, a vortex tube with a finite core radius is discretized by sub-dividing the
cross-section of the tube into a bundle of vortex “lines” and by discretizing each individual line
as described earlier. Note that the filament method presenes the solenoidality of the vorticity
field by construction (Chorin, 1973, 1993; Leonard, 1980, 1985). Another advantage of this



approach is that the motion of the nodes, due to the local fluid velocity, accounts for vorticity
stretch automatically (Helmholtz’s Theorem.) However, in order to maintain the stick
resolution, line segments that stretch beyond a pre-specified length must be split into smaller
contiguous sticks (Knio & Ghonie~ 1990).

The velocity of a vortex filament is evaluated using the Biot-Savart law. Similar to its
vorton counterpart, the velocity kernel is singular and is regularized using the concepts
presented earlier. The velocity at a point due to a collection of N~ vortex filaments, each with
circulation ~ around its curve Cj is given by

‘~YjJc,K&-rj(s’)l~g[&)s’rJ(x,t)–
J

(1.3.2.1)

where K is the velocity kernel, rj is the position vector parametrized along s‘ and g is the
smoothing fhnction with core radius ~j (Harna, 1962; Leonard, 1980, 1985). The volume of
vorticity is preserved by the relation:

(1.3.2.2)

where Lj is the total length of filament ~ (Leonard, 1980, 1985). This relation implies that the
core radius of a tl.kunent is reduced (increased) to account for the stretch (compression) of
vortex lines. Furthermore, Leonard (1980, 1985) suggested that it is possible to conserve linear

(and angular momenta exactly by replacing ~j with @2 +G; ~2 ~, where o is the core radius

of the filament at the site the velocity is being evaluated. Therefore, vortex filament methods
preserve almost all the invariants of the flow as well as maintain the solenoidality of the vorticity
field. The convergence of the regularized vortex filament method to the Euler equations in
unbounded domains has been proved by Greengard (1986). This implies that most of the
techniques discussed previously can be used successfully to obtain higher-order core functions
for the filament method. Alternatively, one can improve the accuracy of the filament
discretization by replacing the vortex sticks with quadratic curved elements (Bliss et al., 1987)
or by fitting splines through the collocation points (Leonard, 1980). For a given level of
accuracy, Bliss et al. (1987) achieved over an order of magnitude reduction in the number of
collocation points when using quadratic elements as compared to linear sticks. Another
advantage of the filament method is that one can easily implement hairpin removal techniques to
delete unwanted small scales of the flow, and thus to delay and in some cases to stop the
explosive growth of the number of elements (Chorin, 1993).

1.3.3 Vortex-Lu#ices and Panels

Vortex-Lattice and panel methods are yet another set of closely-related sub-branches of
vortex methods, which have widely been used in applications that compute the attached flow
loading of lifting surfaces. These methods work well when the wakes can be idealized by thin
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sheets, and when the variation of the field in the cross-stream direction is not so strong. See
Hoeijmakers (1983) for a concise presentation of various wake modeling techniques.

In the vortex-lattice method, the lifting surface is divided into elements. Each element
1

carries a line vortex along its - -chord line, which is connected to line vortices that trail
4

downstream to infinity along the side edges of the element. In this way a horse-shoe vortex is
associated with each element. The strength of these vortices are determined by imposing the

3
no-flux boundary condition at the midpoint of the - -chord line of the elements (Butter &

4
Hancock, 1971). A variant of this method uses quadrilateral vortex rings on the wing section of
the discretization, instead of horse-shoe vortices (Maskew, 1976).

In panel methods the wing is represented more accurately by singularity distributions on
the surface of the wing. Furthermore, the wake is discretized using panels with piece-wise
polynomial distribution of doublets (Johnson et al., 1980).

These methods are not well-suited for the parachute study for the following reasons. (1)
They assume the wakes to be concentrated in thin regions similar to those behind airplane
wings. The wake of a parachute is more similar to that of a bluff body than a wing. (2) In the
case of a parachute, there is a strong possibility that the elements will touch or cross each other,
as well as interact with the parachute. It is not immediately obvious how the intersection of an
element with a solid body or another element can be modeled. For these reasons, the
application of the vortex-lattice and panel methods to the parachute problem cannot be
recommended; a strategy that
latter.

uses the vortex filament method may actually be superior to the

1.4 The Dif&ion Equations

1.4.1 The Random Walk Method

The random walk method is a stochastic approximation of Eq. (1.2.7) and is based on
the observation that the fundamental solution for the unsteady diffusion equation - the Green
fimction - is identical to a Gaussian probability density function with zero mean and variance
equal to 2t/Re . It can be shown that displacing a collection of vortex elements randomly with

zero mean and Gaussian variance equal to 2&/R, mimics the spreading of the vorticity field

during Ar (Chorin & Marsden, 1979).

The random walk method was first applied in the context of Lagrangian vortex methods
by Chorin (1973). It has since been used extensively in vortex simulations primarily because of
its simplicity and ease of implementation in bounded domains, and also because until recently
there were no other viable options for a purely grid-free
convergence of the random vortex method in 2-D unbounded
by Marchioro & Pulvirenti (1982), Goodman (1987) and

simulation of diffusion. The
domains has been demonstrated
Long (1988). The proof of
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convergence in 3-D unbounded domains was given by Esposito & Pulvirenti (1989). They
assert that the stochastic vortex dynamics is not a solution of the Navier-Stokes equations.
Nevertheless, they continue, the continuity property satisfied in the inviscid case and the law of
large numbers ensure, at least in the absence of boundaries, an approximate solution.

The random walk method difkses the vorticity field by spreading out the centers of the
vortex elements while keeping their amplitudes unchanged. Therefore, total circulation is
conserved with this approach. Furthermore, the computations are extremely inexpensive,
involving the addition of three independently generated Gaussian random numbers to the three
coordinates of the vortex centers. However, the method has a few disadvantages. It does not
conserve the mean position of the vorticity in free space exactly, because the mean of the
generated random numbers is only approximately equal to zero. Additionally, the computed
solutions are noisy due to statistical errors. As a result, in order to predict the flow accurately,
simulations are usually pefiormed for longer times and the statistical noise is reduced by
averaging the results. Milinazzo & Saffman (1977) presented a correction for the error in the
mean position and tested it for the case of an initially finite region of vorticity. They found that
the error in the computed mean size of the vortex system is proportional to ~, where N is

the number of vortex elements. Later Roberts (1985) showed that the error in the angular
momentum computed by the random walk method is proportional to $=. Chang (1988)

devised Runge-Kutta type 2-D random vortex methods with an efficient variance reduction
technique and tested them on the model problem of a rotating flow with the initial vorticity
distributed uniformly on a circular patch. The variance reduction was shown to reduce the
sampling errors by one to two orders of magnitude. Fogelson & Dillon (1993) introduced the
concept of a smoothed random walk method and, with the proper combination of the number of
vortex elements and smoothing radius, obtained accurate predictions of the diffusion equation
with relatively fewer number of vortex elements. However, despite the marked improvements
obtained by the implementation of smoothing and variance reduction, the number of elements
remain too high.

It is worth mentioning that the reduction in the error at higher Reynolds numbers implies
that the random walk method may be adequate for simulating flow around parachutes. In
addition, while the predicted vorticity field may be noisy, its integral - the velocity field - is
expected to be smoother.

The slow rate of convergence of the random walk method, ~, is often cited as its

most significant disadvantage. It turns out that the corrected core spreading vortex method by
Rossi (1996) displays a similar convergence rate, although the predictions by this deterministic
method are much more accurate than

1.4.2 The Core Expanswn Method

The core expansion method
diffusion equations deterrninistically.

by the random walk method.

of Leonard (1980) was the first attempt at solving the
In this approach the core of the vortex element expands in

time according to the unsteady diffusion equations. The core expansion method is deterministic
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and is as inexpensive as the random walk method. Unfortunately, although the method solves
the Stokes equations exactly, it does not approximate the Navier-Stokes equations correctly
(Greengard, 1985).

More recently, Rossi (1996) developed a corrected core spreading vortex method and
proved its convergence to the Navier-Stokes equations. This method is deterministic and
Lagrangian. It also circumvents viscous splitting, which is a useful property when dealing with
boundaries. The idea is to allow the core of the vortex element to expand out to a predefine
limit, beyond which the element is replaced by an arbitrary number of new elements with smaller
cores. In the present implementation in 2-D space, each element is substituted by four new ones
which are placed at the four corners of a square that is centered on the old element.
Conservation of zeroth through second moments assigns the circulation and the relative
positions of the new elements, as well as the constraint on the size of the square box.

The predefine core expansion limit manifests itself as a constrained free parameter,
which essentially controls the frequency of adaptation and hence the accuracy and rate of
convergence of the method. Clearly, higher rates of vortex element splitting yield more
accurate predictions, but at a substantially higher CPU cost. In fact, the refinement process
grows the number of elements by 4 ‘“ per “parent” element, where T is the duration of the
simulation! Rossi ( 1996) showed that the circulation of an original element (in 2-D) after T/&

refinements may be interpreted as the probability density fimction of two independent Bernoulli
trials (with probability = 1/2), which incidentally corresponds exactly to the random walk
method in the limit of large number of vortex elements. He also proved that the convergence
rate is proportional to ~, similar to the random walk method! However, for a given N, the

predictions obtained by this method were shown to be significantly more accurate than those by
the random walk method (Rossi, 1996).

Clearly, the main disadvantage of the corrected core spreading method is its tendency to
explode the number of vortex elements indiscriminately. That is, rather than adding new vortex
elements only at the boundaries of the vorticity region to account for the volumetric expansion
of the field, the method faithfi,dly replaces a “parent” element with four “child” elements
irrespective of its position in the fluid domain. As a result, a large percentage of “child”
elements may/will end up practically on top of each other, adding only to the computational
complexity but not accuracy. For this purpose, Rossi (1997) devised a merging algorithm with.
uniform estimates of the merger-induced error for vortex elements with Gaussian basis
functions. He tested the accuracy of this technique in conjunction with the corrected core
spreading method using standard examples. Generally, only about 25-30 percent of N was
shown to be necessary for an accurate simulation, verifying the earlier assessment about the
tendency of the corrected core spreading method to generate unnecessary “child” elements.

The corrected core spreading method has not been tested in 3-D, However, it is clear
that a direct extension of the method from 2-D to 3-D would exacerbate the situation fi.u-ther,
requiring 8d” vortex elements at the conclusion of a simulation. It is conceivable that, if the
plane of the square box is chosen to be normal to the vorticity vector and diffusion along the
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vector is assumed to be zero, only four “child” elements may be necessary in 3-D. However,
much more sophisticated vortex merging algorithm will be necessary for such a scenario.

a

1.4.3 The Weighted Particle Method

The weighted particle or resampl.i.ngor particle strength
developed by Cottet and Mas-Gallic (1990), are another class of
solving the Navier-Stokes equation.

exchange methods, initially
deterministic techniques for

In the original approach, the Navier-Stokes equations were solved using viscous
splitting - similar to the logic used in the random walk method. Convection was evaluated by
the standard Lagrangian vortex element method. Next, vortex element centers were used as
quadrature points to evaluate the exact integral solution of the unsteady heat equation (Cottet
& Mas-Ga.llic, 1990). The weighted particle method is a technique which redistributes the
strength of the vorticity field among the vortex elements, while keeping their positions fixed.
This is in contrast to the random walk method, in which case vortex element positions are
redistributed while keeping their circulation fixed. Note that since the integral solution of the
heat equation is exact (no core fi.mctionsare used with the kernel) this method is limited only by
the accuracy of the viscous splitting algorithm and the accuracy of the quadrature, which is
aflected by the regularity of the vortex element distribution. The proof of convergence of the
weighted particle method was given by Cottet & Mas-Gallic (1990). Two comments are in
order here. First, convergence was proved based on the stability condition that inter-element

distances must be less than or equal to C(~/R, ~ J for arbitrary positive constants C and s.

Second, in the original derivation of the method total circulation was not conserved.
Subsequently, Choquin & Huberson (1989) derived a formulation that conserves total
circulation, and applied their method to the model problem of shear layers. A parametric study
of the accuracy of the method was conducted by Choquin & Lucquin-Desreux (1988).

Degond & Mas-Gallic (1989a) proposed and proved the convergence of what is now
popularly referred to as the particle strength exchange method. In this approach, the exact
integral form of the difksion equation is approximated by a new integral which replaces the
Gaussian kernel with an arbitrarily high order core fi.mction. The new integro-differential
approximations of the Navier-Stokes equations are then solved directly, and without having to
resort to viscous splitting. Degond & Mas-Gallic (1989b) generalized the method further to
incorporate matrix-valued anisotropic viscosity, which is an attractive feature when considering
large eddy simulations. The particle strength exchange method has been used in 2-D
(Koumoutsakos & Leonard, 1995) and 3-D (Winckelrnans & Leonard, 1993) flow simulations.

From the perspective of the convergence properties of this method, the errors due to the
approximation of the Laplacian using a generalized core fi.mction are quite similar to the results
obtained from the analysis of the Lagrangian vortex method. Briefly, the convergence rate
using an rn-th order, k times continuously differentiable spherical core function with radius o is

(0 0“ + (lz/CJ~0-1 ), subject to the stability condition CJ2RC>1. h is the

This suggests that in order for the method to converge we must have a

inter-particle distance.

vanishingly small core



radius, subject to condition (h/G)< 1;i.e., neighboring cores must overlap everywhere in the

domain and at all times. Unfortunately, the more desirable non-negative core functions, which
are uniformly stable, are only second order in C, i.e., m = 2.

The particle strength exchange method offers a few attractive advantages. It is grid free
and deterministic. It maintains the conservation properties of the system and allows the
implementation of relatively inexpensive kernels. Convection and diffusion can be simulated
simultaneously with this method - without viscous splitting - which facilitates the simultaneous
application of no-flux and no-slip boundary conditions. The method can be used successfully
for the purpose of large eddy simulations, because of its ability to handle anisotropic, matrix-
valued viscosity. However, the particle strength exchange method suffers from some serious
disadvantages. First, it exchanges the strength of the particles without redistributing their
positions. Therefore, in order to capture the effect of vorticity field expansion, one has to
continuously add layers of zero vorticity elements at the field front to allow the exchange
mechanism to “push” the vorticity field outward. This may result into unnecessary book-
keeping exercises (to keep track of the vorticity front) as well as extraneous computations
involving vortex elements with zero or near-zero strengths. Second, since the method uses the
particle positions as quadrature points to evaluate the Laplacian integral, the accuracy of the
integral evaluations deteriorates sharply as the vortex element distributions inevitably become
more disordered (Marshall & Grant, 1995b). The practiced remedy is to tiequently project the
vorticity field onto a uniform distribution of vortex elements and discard the disordered ones
(Koumoutsakos & Leonard, 1995). However, this approach suffers from two significant
consequences that defeat the entire purpose of utilizing a Lagrangian method. First, it
introduces a level of numerical di.fhsion into the computation. Second, the regridding requires
special attention near the boundaries, which are bound to be difficult in 3-D computations.
Another disadvantage of the particle strength exchange method is its resolution; i.e., although
the particles are separated by a distance h, the resolved diffusion length scale is ody 0>> h.
This implies that a much larger number of vortex elements will be necessary in order to resolve
the flow field at the level of inter-particle length scale, h. Lastly, the particle strength exchange
method cannot be higher than second order accurate in O, if the desirable positivity of the kernel
is to be utilized.

1.4.4 The Cutoff Differentiation Method

The method of cutoff di.i3erentiation was utilized by Fishelov (1990b). The idea is to
approximate the vorticity field as the convolution of a core fi.mction with the vorticity. The
Laplacian operator of the diffusion equation is then evaluated by an explicit differentiation of the
cutoff fimction. Alternatively, one can view this as the convolution of a core function with the
Laplacian operator. Therefore, the accuracy of the method is determined by the choice of the
core Ii.mction and the numerical approximation of the integral involved in the convolution
operator. In this respect, Fishelov’s method is similar to the particle strength exchange
mechanism. However, its advantage over the latter is that it can accommodate infinite-order
core functions. A closely related approach was proposed by Najm (1992). He used a Taylor
series expansion of the vorticity with respect to time and retained the first and second derivative
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terms. He then substituted the unsteady diffusion equation and its time derivative in the latter to
obtain the final equation, which contains the Laplacian and the hi-harmonic of vorticity. The
spatial derivatives were then evaluated by differentiating the core functions directly. For the
cases tested, this approach was shown to be three to four orders of magnitude more accurate
than the particle strength exchange method.

in the

using

The convergence of Fishelov’s method ( 1990b) was proved, for the heat equation, to be

order of o (G” + (h/0~ G-2) - equal to that of the particle strength exchange method

non-symmetric core functions. Additionally, the accuracy of the method was
demonstrated using two test problems (Fishelov, 1990b). The cores in these tests were
nominally set to G = 2X. This implies that for inter-particle distances, initially set at 0.1 to
0.2 one can at best expect resolutions of 0.64 to 0.9, respectively, for the diffusion
computations ! Furthermore, parametric studies by Marshall & Grant (1995b) reveal that
Fishelov’s method displays severe degradation in the solution accuracy when the elements are
disordered. In general, the advantages and drawbacks of Fishelov’s method parallel those of the
particle strength exchange method and will not be reiterated here.

1.4.5 The Di~swn Velocity Method

The diffusion velocity method was developed, apparently independently, by Degond &
Mustieles (1990) and Ogami & Akamatsu (1991). It was derived as an intermediate method
between the random walk and the particle strength exchange or core differentiation methods.
That is, the diffusion velocity method is deterministic, yet it models the volumetric expansion of
the vorticity field. The idea was based on the discovery that the Laplacian of vorticity can be
reformulated into sort of a convection of vorticity, if the corresponding velocity u~ is assigned a

Vcl.)
value proportional to the ratio of the vorticity gradient to the vorticity (u~ = ~ ). As a result,

a purely Lagrangian simulation of the Navier-Stokes equations becomes possible if the vortex
elements travel with the local convective and diffbsive velocities. In a series of numerical
experiments, Degond & Mustieles (1990) discovered that their predictions were quite accurate
everywhere, except toward the tail ends, where significant oscillations were present. They
recognized that the motion of the particles under diflhion is expansive. Consequently, they
argued, the inter-element distances grow rapidly at the tails and the elements lose core overlap,
causing significant oscillations there. They showed that larger cores will diminish the
oscillations and even proposed the implementation of time varying cores. It turns out that the
derivation given by Degond & Mustieles (1990) and Ogarni & Akarnatsu (1991) is incorrect.
The correct equations were later derived by Kempka & Strickland (1993) from first principles,
linking the kinematics of circulation to viscous dynamics. They recognized that the diffbsion
velocity is non-solenoidal and that it changes the area over which vorticity difkses. This
amounts to a source term which is proportional to the divergence of the diffusion velocity or,
equivalently, to the square of the di.ffbsionvelocity minus the ratio of the Laplacian of vorticity
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(1993) proposed a core expansion to account for the effect of divergence, in addition to
convection by the diffusion velocity.

The diffi.wionvelocity method is a relatively new field and theoretical research as well as
more computational experiments are necessary to understand the range of stabtity and accuracy
of the method. As of today, no theoretical proof exists for the convergence of the diffusion
velocity method (with core expansion) to the Navier-Stokes equations. The proof by
Greengard (1985) that the core spreading method of Leonard (1980) approximates the wrong
equation raises legitimate concern whether the difhion velocity method predicts the Navier-
Stokes equations correctly.

Degond & Mustieles (1990) pointed out two problems that are specific to the diflhsion
velocity method (without core expansion.) First, the diffusion velocity is nonlinear which makes
it impossible to obtain a correct solution based on the principle of superposition. That is, using
a particle representation of the vorticity field, the diffusion of vorticity can be evaluated as the
superposition of the diffhsion of the individual particles representing that field (because of the
linearity of the Laplacian operator.) However, the nonlinear diffusion velocity at a point cannot
be evaluated as the linear cornbiiation of the diffusion velocities of the particles. Second, since
vorticity is infinitesimally small at the boundary of the vorticity field and since its gradient is
expected to be large, the exact diffusion velocity is infinite at the boundary. However, in a
numerical implementation the diffhsion velocity has to remain finite and bounded by a maximum
velocity. Therefore, instead of emulating a diffusion at infinite velocity, the numerical method
simulates a diflbsion with finite velocity, which creates a shock-like diffusion front at the edges.
This shock front is the source of instability at the edges which will eventually penetrate into the
interior and corrupt the computation. The method developed by Kempka & Strickland (1993)
may display a similar symptom. This is because the cores at the edge must be infinitely large in
order to represent the physics of the flow correctly, but they can only be finite in a simulation.
In a series of experiments, Shankar (1996) showed that the removal of vertical elements that
carry seemingly insignificant values of circulation at the edges can lead to inaccurate solutions.
For example, it was shown that accurate results were obtained when elements with circulation
values smaller than 10’6were eliminated, but inaccurate results were obtained when elements
with circulation smaller than 10’5were discarded ! Therefore, since the core radius is inversely
proportional to the vorticity, one may anticipate the accuracy of the d.iffhsionvelocity method
to be quite sensitive to the accuracy with which vorticity fronts with very large (infinite)
di.fhsion velocity are captured; i.e., the solution must be highly sensitive to the correctness of
the core size. On the other hand, the inclusion of large cores implies that for large time
simulations the computational vorticity field will be overwhelmed by the core radii of the
elements at the field front, and the accuracy of the predictions may deteriorate due to the large
cores. Additionally, for the case of flow in bounded domains the cores may actually cross the
walls, inducing inaccurate slip velocities and subsequently introducing inaccurate vorticity into
the field.

Note that, in 2-D, it is easy to verify that the diffhsion velocity cancels one of the terms
contained in the core expansion formula, leaving only the Laplacian operator. As a result,
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intuitively, one may expect the issues raised by Degond & Mustieles (1990) to have minimal
relevance to the formulation derived by Kempka & Strickland (1993). Therefore, in the absence
of a rigorous proof of convergence and/or extensive numerical tests of the accuracy of the
di.ffhsionvelocity method with core expansion, the above evaluation (regarding the effect of the
core size of the edge elements on the accuracy and stability of the predictions) may be
categorized as “healthy” skepticism rather than a rejection of the method.

The accuracy of the difiision velocity method depends strongly on the accuracy with
which the first and second degree derivatives of vorticity are evaluated as well. Degond &
Mustieles (1990), Ogami & Akamatsu (1991), and Kempka & Strickland (1993) all
implemented the method of core fimction differentiation by Fishelov ( 1990b). However, since
the distribution of the vortex elements is nonunifon the accuracy of the diffusion velocity
evaluations is expected to be quite poor (Marshall & Grant, 1995b). Marshall & Grant
(submitted) have proposed a new moving least-squares method for differentiating on irregularly
spaced points. In this approach, the derivatives at a point are computed by fitting a second
order polynomial to the vorticity values of the vortex elements that are in the proxirnity of that
point, and by minimizing the local least-square error. This yields a system of two linear
equations for the unknown coefficients of the polynomial, which can then be used to evaluate
the derivatives. Preliminary test results with irregularly distributed points have displayed the
superiority of the moving least-squares method over the particle strength exchange and core
fimction differentiation methods.

At present, the most serious difficulty with the diffusion velocity method is the absence
of a formulation in 3-D space. The equation derived by Kernpka & Strickland (1993) yields no
information about the diffusion velocity in the direction of the vorticity vector. Marshall &
Grant (submitted) proposed an ad-hoc argument to ignore the diffbsion velocity in the third
dimension, which essentially implies the assumption of local two-dimensionality of the difiision
velocity. Clearly, a rigorous mathematical derivation is necessary in order to find the correct
answer in 3-D.

1.4.6 The Vorticity Redistribution Method

The vorticity redistribution method was developed recently by Shankar & Van
Dornmelen (1996). The idea is to simulate diffhsion by redistributing fractions of the circulation
of each vortex element to the neighboring elements, such that the conservation properties of the
system are preserved. The basic approach k the current @lamentation is to assign a radius of
intluence for each vortex element (typically in the order of the diffusion length scale) and to
reformulate the conservation of zeroth to second moments for the elements inside the radius in
terms of the fractions. Repeating the process for all vortex elements yields a linear system of
equations for the unknown fractions, which is solved using linear progr amming techniques. If a
solution of the linear system exists, it is guaranteed to be a stable and convergent approximation
of the difksion equations. If a solution does not exist, it is an indication of the presence of
“holes” within the computational domain, in which case a judicious filling of the holes with new
elements (with zero circulation) will lead to a guaranteed solution. The same mechanism
enforces the addition of new elements at the vorticity field front to account for its volumetric



expansion. Note that the (lack of) existence of a solution equips the redistribution method with
an automatic mechanism that detects when and where an element maybe added. Therefore, this
method is inherently adaptive. In contrast, in order to maintain solution accuracy and stability,
the particle strength exchange and core differentiation methods require the flooding of the field
front with multiple layers of new elements, because they lack a priori information about the
extent to which vorticity may have to be diffused.

The vorticity redistribution method has some attractive features which are essential for
the accurate simulation of difhsion. It guarantees - by construction - the conservation of
circulation for each element, the conservation of the center of vorticity, and the correct
expansion of the mean diameter. Furthermore, only positive fractions are allowed, implying that
reverse vorticity cannot form spontaneously in the middle of a flow field. Unlike the particle
strength exchange and core differentiation methods, core functions are not used in the
redistribution method. As a result, the resolution of the latter is in the order of inter-element
spacing and not the nominally larger core radius. More importantly, since the redistribution
formulation does not involve quadrature, frequent remeshing of the field onto a uniform
distribution of vortices is not required for obtaining accurate predictions. (The vorticity
redistribution method is equivalent to a finite difference scheme for a utiorm distribution of
points.)

The high accuracy of the method has been demonstrated by Shankar (1996) using a
number of test problems. The most notable example, relevant to this report, is the direct
simulation of impulsively started flow over a circular cylinder at R, = 9500. More specifically,

the converged solution used 60,000 vortex elements at non-dimensional t=3. IIIcontrast, the
direct simulation by Koumoutsakos & Leonard (1995) using the particle strength exchange
method required 350,000 elements at the same non-dimensional time!

The vorticity redistribution method suffers from the following disadvantages. First, it
must employ viscous splitting to simulate the Navier-Stokes equations. Therefore, its rate of
convergence is limited to that of viscous splitting. Furthermore, it cannot satisfy no-flux and
no-slip boundary conditions simultaneously. Second, the method is algorithmically complicated
and will require substantial initial time investment to implement. Third, the computations are
expensive - approximately equal to the Biot-Savart evaluations. However, for a given accuracy
(rather than a given number of elements) the redistribution method may still be competitive.
Finally, the extension of the method to large eddy simulations; i.e., matrix valued viscosity, may
not be a trivial task.

1.4.7 The Free-L.ugrange Method

The fke-Lagrange method developed by Russo (1993) and Strain ( 1994) is based on the
idea of constructing a finite difference scheme to approximate the Laplacian using the Voronoi
diagram. In this approach, the vortex elements are convected with their local velocity, and the
diffbsion is solved by constructing a Delaunay triangulation on the particles and evaluating the
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derivatives. The evaluation of the derivatives at a point amounts to finding quadrature weights,
which happen to be a iimction only of the position of the neighboring points.

The discrete Laplacian is weakly consistent to first order with the continuous Laplacian,
but it is not pointwise consistent (Russo, 1993). The total vorticity and angular momentum
were shown to be conserved, but no information was given about the first moment. Test results
using a set of parameters showed that the diffbsion errors are smaller than the errors in the
velocity evaluations. This is because the distribution of vortex elements eventually becomes too
irregular for the Biot-Savart quadrature to produce accurate results, whereas diffusion is
computed optimally using the Voronoi diagram. Therefore, as far as dfision is concerned, the
method is adaptive and has been shown to maintain long-time accuracy. However, a truly
adaptive scheme will have to consider the accuracy of the velocity evaluations as well.

The disadvantage of free-Lagrange methods, in general, is that if the topology of the
flow changes rapidly, as would be expected in the case of the flow over parachutes, the Voronoi
diagram would have to be reconstructed at each tirnestep. This is an unnecessarily extra
overhead that vortex methods can do without. Furthermore, the accuracy of such a
construction is linear in vorticity at best, and it is not obvious how the accuracy of the method
can be improved.

1.5 Wall Boundary Conditions

The first successful implementation of the no-slip boundary condition, in the context of
2-D grid-free vortex methods, was provided by Chorin (1978). In this approach, in order to
satisfy the no-slip boundary condition, the solid wall was modeled by an infinitesimally thin
sheet of vorticity. The sheet strength is equal to the ditTerence between the velocity that is
prescribed as the boundary condition and the tangential velocity at the wall that is induced by
the combined effects of the vertical velocity of the vortex elements and a potential flow that
imposes the no-flux boundary condition. At the implementation level, the contiguous sheet is
discretized using a set of contiguous segments and a prescribed variation of the vorticity
strength across each segment. The next step is to account for the diffusion (and convection) of
the sheets from the wall into the flow interior. It is well-known that the use of isotropic vortex
particles very near the wall leads to a backwash effect and the eventual degradation of the
simulation. Chorin (1978) proposed a domain decomposition method, in which the vorticity
field is represented by anisotropic sheets within a user-specified thin region near the boundary,
and by isotropic vortex elements outside this region. Based on an order of magnitude analysis,
Chorin (1978) argued that the flow near the boundary is dominated and characterized by the
gradients normal to the wall. This led to the Prandtl boundary layer approximation of the
vorticity dynamics near the wall, as well as a significant simplification of the kinematic
relationship between the vorticity and velocity fields. Therefore, the sheets convect and diffhse
away from the wall and into the interior according to the Prandtl approximation. The random
walk method is used to simulate diffusion. Once the sheets traverse the numerical boundary
layer, they are converted to isotropic vortex elements while conserving circulation. Similarly, if
a vortex element jumps into the numerical boundary layer it is converted into an appropriate
sheet.



A rigorous proof of convergence for the above method is not available. However, an
extensive numerical convergence study has been conducted by Puckett (1989), using the
example problem of flow over a flat plate. Additionally, numerous examples of the successful
application of this technique to complex flow problems can be found in the literature (Ghoniem
& Gagnon, 1987; Cheer, 1989). The accuracy and convergence rate of the vortex sheet
method, as implemented above, are not very high. Obviously, one source of error is the well-
documented ,poor performance of the random walk method. Another reason was given by Sod
(1991) who pointed out that the computation of the velocity field involves blob-blob, sheet-
sheet, and blob-sheet interactions. He argued that the method by Chorin (1978) ignores blob-
sheet interactions and, thus, does not allow for a consistent transition between the two domains
when a blob is near the edge of the numerical boundary layer. In other words, the blob-sheet
interaction provides a coupling mechanism between the boundary and exterior sub-domains in
such a way that not only circulation is conserved, but also the continuity of the tangential and
the normal velocities across the edge of the numerical boundary layer is preserved.
Unfortunately, Sod (199 1) did not substantiate his observation by any numerical experiments.

The validity of the Prandtl approximation, especially in separated flow simulations, has
long been the source of controversy and has been suspected to be the dominant source of the
observed inaccuracy in the vortex sheet method. In order to put this question to rest, Anderson
& Reider ( 1994) reported results from a series of high resolution fi.nite-difference simulations of
flow over a 2-D cylinder at Reynolds number 1000. At this flow regime, much of the
complicated boundary layer behavior, such as separation of the back flow and multiple sign
changes of vorticit y along the cylinder surface, are present. The high resolution fhite-difference
method was used to eliminate the errors caused by the random walk method and/or the sheet
discretization. The flow simulations were conducted using the Navier-Stokes equations on the
entire domain, as well as the finite-difference version of the Prandtl/Navier-Stokes method by
Chorin (1978). Results indicated that the vorticity fields obtained by the two methods are
indeed quite different and that the long-time solutions obtained by the domain decomposition
method blow-up. Anderson & Reider (1994) attributed the problem to the incompatibility
between the two solutions at the interface of the two sub-domains. They then devised a new
scheme in which the tangential as well as the normal velocities are consistent across the
interface, and showed the vorticity field to be in excellent agreement with that of the full Navier-
Stokes simulation. This supports the assertion by Sod (1991) about the importance of including
the sheet-blob interactions in a computation. It also suggests that the Prandtl approximation is
an accurate and efficient method for resolving even complex separated flows near the boundary
- given, of course, the correct boundary conditions are implemented. Cottet (1991) proposed
an overlapping domain decomposition method that may be of value in the context of
Prandtl/Navier-Stokes approximations, although he used it in conjunction with a hybrid particle-
grid scheme. The idea is to allow for a limited overlap between the inner and outer domains,
instead of a sharp interface between them which may lead to a stronger coupling between the
two sub-domains.

The extension of the vortex sheet method from 2-D to 3-D was first presented by
Chorin (1980). In this case, the velocity jump at the boundary was discretized over a collection
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of rectangular vortex tiles. The evolution of the tiles within a thin region near the boundary
was evaluated using the Prandtl approximation, with the added simplification that vorticity
stretch in the boundary region is negligible. The no-flux boundary condition was satisfied by the
method of images. Once a vortex tile jumped outside the boundary domain, it was replaced by
a vortex stick. Conservation of vorticity was ensured by setting the volumetric vorticity of the
stick equal to the product of the magnitude of the surface vorticity of the tile and its area, and
by aligning the stick direction parallel to the vectorial direction of the tile surface vorticity.
Fishelov (1990a) replaced the vortex sticks with spherical vortex elements, and conducted a
parametric study of the convergence of the Prandtl approximation using the simple case of flow
over a flat plate, with periodic boundary conditions in the transverse direction. This method
was later incorporated into a hybrid vortex-boundary element algorithm for the simulation of
viscous flow inside 3-D geometries with moving boundaries of the type found in engines
(Gharakhani & Ghonien 1997a). The boundary element method was used to evaluate the
potential velocity and its gradients in the field, and to impose the no-flux boundary condition
(Gharakhani & Ghonie~ 1997b). A parametric study of the accuracy and convergence of the
method was also provided for the case of flow in a duct with square cross-section and, where
possible, results were compared with exact solutions. Fishelov (1994) has also developed a
version of the method for the spherical coordinate system and has simulated the flow over a
sphere for short times. Unfortunately, the proposed approach is not general since the tiles are
topologically rectangular and the potential flow is evaluated by the method of images. More
recently, Gharakhani & Ghoniem (1997c) expanded the versatility of their vortex-boundary
element method by generalizing the rectangular vortex tiles to polygons and used it to simulate
the induction process in an engine cordiguration with and without a valve.

Before proceeding with the presentation of other 3-D algorithms, it seems appropriate
here to introduce 2-D schemes that are potential candidates for a successful extension to 3-D.
Koumoutsakos et al. (1994) developed a boundary vorticity creation method based on the
Neumann vorticity boundary condition of Kinney & Paolino (1974). In this approach, the
vortex sheet, which is established on the boundary to satisfy the no-flux velocity boundary
condition, is reformulated in terms of the flux of vorticit y at the wall. The latter is then used as
the boundary condition for an unsteady diffusion equation with a homogeneous initial condition
to diffuse the boundary vorticity into the interior. As a result, all the strength of the vortex
sheet is distributed onto the existing vortex elements in the interior and the no-slip boundary
condition is satisfied at the end of the time-step. Koumoutsakos et al. (1994) obtained the
solution of the difiision equation using an indirect boundafy integral formula, which expresses
the field vorticity in terms of time-dependent surface potentials that are distributed over a set of
panels defining the surface geometry. A i%fi.mctiondependence of the surface potentials on
time was assumed so that a closed-form solution for the boundary integrals could be obtained.
The resulting algorithm is grid-free, meshes well with the particle strength exchange mechanism
for diffusion, and precludes the use of the Prandtl approximation. The robustness of this
method was demonstrated using the example of impulsively started flow over a cylinder at
various Reynolds numbers (Koumoutsakos et al., 1994; Koumoutsakos & Leonard, 1995).



Strickland et al. (1996) outlined a two-dimensional, unsteady, boundary-layer model
that utilizes the diffusion velocity concept, and can be incorporated into vortex element methods
via the domain decomposition technique. The primary objective is to minimize the number of
vortex elements injected into the flow interior - endemic of the vortex sheet method - while
maintaining accuracy. In this approach, the area of the thin numerical boundary layer is
discretized using a set of grid points. A re-gridding scheme is implemented to control the
distortion of the grids caused by their Lagrangian motion. The proposed algorithm is to diffhse
the wall vorticity into the layer, allow diffbsion of the existing vorticity to take place via the
diffusion velocity method, convect the flow in the Lagrangian hme, and re-map the vorticity
field back onto the original grid distribution. When sufficient vorticity traverses the edge of the
boundary domain, it is replaced by new vortex elements such that up to the second moments are
conserved (WoEe, 1997). Strickland et al. (1996) used the one-dimensional version of the
model proposed by Koumoutsakos et al. (1994) to diffuse the wall vortichy into the layer.
They pointed out that the assumption of a &fi.mction time-dependence for the potential leads to
the kernel of an impulsively started flat plate and argued that, since the diffusion equation is
linear, one may obtain the vorticity distribution associated with the flux from the wall at the end
of the time step as the superposition of impulsive solutions using a convolution integral.
Strickland et al. (1996) showed that the application of the convolution integral leads to a
superior representation of the vorticity distribution, especially near the boundary. The accuracy
of the proposed boundary layer model has been verified using a numb of standard test cases.
The main disadvantage of this method is its use of the diffusion velocity method at the
boundary, which does not have a rigorous solution when vorticity is zero there. An additional
complication, which is actually shared by all methods that use domain decomposition, is how
comers and edges (in 3-D) are handled so that two neighboring boundary domains do not
overlap or parts of a boundary domain do not fall outside the physical boundaries of the
geometry.

The triangulation technique by Huyer & Grant (1997) is the 2-D demonstration of the
algorithm that the 3-D counterpart by Grant et al. (1995), which is at the development stage, is
expected to adopt. In the 2-D version, the boundary surface is defined by a set of flat panels.
The region near the boundary surface is triangulated using four layers of nodes that are
alternately staggered above the panel centroids and the panel ends. The layers are separated by
half the difhsion length scale. Additional triangular elements are generated in time using a
moving front technique. Huyer & Grant (1997) use surface vorticity and potential source
panels based on the recommendation by UhJman & Grant (1993). The velocity boundary
conditions are satisfied by the following iterative procedure. An initial (arbitrary) distribution of
vorticit y in the fluid region will generally induce a non-zero velocity at the boundary surface.
The no-flux and no-slip boundary conditions are imposed at the panel nodes by solving a linear
system of equations for the unknown amplitudes of the sources and vortices. Subsequently, the
new boundary sources and vortices generate a new velocity distribution in the fluid domain, and
thus a new vorticity distribution there. This is the beginning of the next iteration step and the
process continues until the maximum vortex sheet strength is equal to a user-specified small
value. In practice, this approach can be extended to grid-bee methods as well.
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We now return to other methods that have been implemented in 3-D.

Bernard (1995) developed a deterministic vortex sheet method in 2-D. The 3-D version
was later introduced by Bernard & Thornas (1995). In this approach, the vorticity field in the
boundary layer was discretized using a set of sheets (tiles in 3-D) with finite thickness along the
wall and stacked on top of each other in the normal direction to the wall. The layer immediately
contiguous to the wall was discretized using special sheets with half thickness, which remain
stationary during the simulation. The sheet vorticity was assumed to be discontinuous; having a
uniform value within the sheet and zero elsewhere. The diffusion of vorticity was evaluated
using the deterministic method by Fishelov ( 1990b). Fictitious tiles were added below the wall
and a special interpolation function used to account for the loss of vorticity due to the portion
of the core radius that extends beyond the wall. The effect of vorticity stretch was included in
the 3-D formulation. The velocity field was obtained by both the Prandtl approximation method
(Chorin, 1980) and the Biot-Savart formula. Only the latter was used in the 3-D
implementation. For the case using the Prandtl method, the no-slip boundary condition was
satisfied locally by updating the vorticity of the wall sheets via a first-order discretization of the
normal gradient of the tangential velocity at the wall. For the case using the Biot-Savart
formula, the wall sheet vorticity was updated by solving a linear system of equations that relates
the wall vorticity to its velocity - with the latter set equal to zero. The method was
demonstrated to offer relatively high accuracy using a few standard boundary layer example
problems. However, special care is necessary to account for the incoming and outgoing vortex
element. Furthermore, as would be expected horn the diffusion scheme of Fishelov ( 1990b),
and because the gaps and overlaps caused by discontinuous vortex tiles degrade the velocity
evaluations, it becomes necessary to regrid the sheets frequently to maintain an acceptable level
of solution accuracy.

In the methods described thus far, no provision was made - either implicitly or explicitly
- to enforce the solenoidality of the 3-D vorticity field, which is essential for obtaining accurate
solutions for long times. In what follows, advanced methods will be presented, which persevere
the solenoidality of the vorticity in the computational domain and, in particular, within the
numerical boundary layer.

The first such attempt was made by Summers (1991). Only a brief introduction of the
method will be given here, because the algorithm contains a level of hand-waving and is too
complicated and costly to consider for implementation. The idea is an extension of the method
of tiles by Chorin (1980) and is based on partitioning the boundary into a collection of
polygonal loops which, in aggregate, satisfy the no-slip and solenoidality conditions and
account for vorticit y stretch. Each loop consists of a cluster of rectangular tiles which,
individually, neither satisfy the solenoidality of the vorticity field nor account for vorticity
stretch. However, the cluster is solenoidal because the tiles form a loop, and it simulates
vorticity stretch as a result of the independent motion of the tiles.

Summers & Chorin (1996) have developed a new class of vorticity generation models
based on the creation of velicity at the boundary, which will be discussed in Section 2.5.



Casciola et al. (1996) have proposed a generalized integral formulation for a 3-D
vorticit y generation mechanism that will be useful in extending the applicability of the 2-D
algorithms (for near-wall vorticity dynamics) to 3-D. The derivation is based on the boundary
integral solution of the diffision equation with a given initial condition, together with the
Dkichlet boundary condition for the normal component of the vorticity at the wall and the
Neumann boundary condition for the tangential components. The boundary vorticity vector is
then meshed with the boundary velocity vector via the definition of vorticity and the generalized
Biot-Savart formula (WU& Thompson, 1973). This yields a boundary integral formulation that
relates the no-slip boundary condition to the Neumann boundary condition for the diffhsion
equation. A significant consequence of this derivation is that for an initially divergence-flee
vorticit y field and a solenoidal vorticity flux at the wall, the vorticity field at subsequent times
will remain solenoidal. However, during a computation, the diffhsion time-step is preceded by
the Euler time-step which, when using the vortex blob method, may supply a non-solenoidal
vorticity field as the initial condition for the diffhsion step.

To this end, Wu et al. (1995) devised a novel projection method that maps a general
vorticity field in a bounded domain onto the divergence-free space. Differential as well as
integral formulations were derived. Wu et al. (1995) showed that the curl of the vertical
velocity is in general equal to the vorticity, plus a volume integral term containing the
divergence of vorticity and a surface integral term containing the normal component of vorticity
at the boundary. They then proposed an optimum correction by decomposing the velocity into
the familiar vertical and potential components, and an additional corrective potential term. The
latter was obtained by solving a Laplace equation, with a Neumann boundary condition that
reflects the existence of non-solenoidal vorticity in the field and on the boundary. Note that if
the vorticity field is divergence-free everywhere, the Neumann boundary condition and
subsequently the corrective potential term reduce to zero, and vorticity is trivially recovered as
the curl of the vertical velocity. In this sense, the method is optimuu as it solves one additional
boundary integral equation, only when necessary. Wu et al. (1995) demonstrated the
effectiveness of the projection method in its differential derivation using the 3-D lid-driven
cavity problem as the example.
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2 VELICITY METHODS

2.1 Introduction

The velicity (magnetization or impulse) method is a new derivation based on the
canonical Hamdtonian for the incompressible Euler equations, and is valid in all space
dimensions (Oseledets, 1989; Buttke, 1993). It has the important property of preserving the
invariants of the flow: impulse, angular momentum helicity density and kinetic energy.
Furthermore, by construction, velicity satisfies the solenoidality of the velocity and the vorticity
everywhere in the field. Therefore, the velicity method does offer some fundamentally
significant advantages over the traditional vortex methods. However, it is still in its infancy
consequently, theoretical proofs of convergence and error analyses, and rigorous numerical
verification of the accuracy and overall robustness of the solutions for long times - especially in
three dimensions - are just beginning to emerge in the literature. Furthermore, to date, full
velicity simulations that include viscous and wall effects are not available.

Oseledets (1989) introduced the formalism for the velicity method for the case of
constant-density Navier-Stokes equations. Later, Buttke (1993) extended the idea to the case
with variable density and demonstrated the potential advantages of the method using flow
induced by a generic vortex torus. Most recently, Cortez (1995, 1996) provided an analysis
showing the equivalence between the velicity variable and a vortex dipole. Interestingly, the
idea of discretizing the vorticity in the Euler equations by vortex dipoles, instead of monopoles
or vortons, was proposed prior to the introduction of the velicity method (Saffman & Meiron,
1986). However, Saffinan & Meiron (1986) dismissed the idea because, among other reasons,
they argued that the self-interaction term leads to infinite speed. Later, Chelhnov (1987)
proposed that the self-interaction term is bounded using physical reasoning, and showed the
vortex dipole method to be Harniltonian and to preserve all the relevant flow invariants. This
equivalence between the velicity and vortex dipoles suggests that technologies that have thus far
been developed for vortex methods may be extended to the velicity method directly (Buttke,
1993; Cortez, 1995, 1996; Recchioni & Russo, 1995).

2.2 Formulationa

The equations of motion of an incompressible viscous fluid in a bounded 3-D domain, D,
with boundary, aD, may be expressed in the velicity transport formulation as:

akf
—-l-u “vM =
&

–M@u~+;~M
e

xED (2.2.1)

V.u=o xED (2.2.2)
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M=u+v@ xGD (2.2.3)

U(x,t =O)=uo xED (2.2.4)

U(x,t)=(u”zu”p, u”n) x ezh (2.2.5)

where M is the velicity and 0 is an arbitrary scalar function. AUother parameters were defined
in Section 1.2. Equation (2.2.3) states that the velicity field is not defined uniquely, which may
be usefid in constructing more accurate andlor more versatile algorithms. It also implies that
vorticity is simply the curl of the velicity:

can be

(J)=~u =~M (2.2.6)

Application of (2.2.2) to (2.2.3) yields a Poisson equation for @, the solution of which
back-substituted in (2.2.3) to obtain the velocity distribution for a given velicity field:

u =M -qA-I(v.M)] (2.2.7)

Since velicity, like vorticity, is concentrated in compact regions of the flow, Buttke
(1993) extended the idea of the Lagrangian vortex element method to equations (2.2.1 - 2.2.3)
and constructed the Lagrangian velicity ‘Mob” method for unbounded domains. He discretized
the velicity field using Nv blobs, each located at xi and with volumetric velicity m, = M(xi, 0)~3:

N

M(x, t) =
x ‘i(f)fc (x ‘xi) (2.2.8)
i-l

where h is the inter-element distance and f.(x) = ~ IWO) isasmoothing or core fi.mction

with core radius cr. The velocity field, Eq. (2.2.7), corresponding to the velicity distribution
(2.2.8) is:

N

U(x,t) = Xb i(f)~a(X ‘X,)-m,(t)- ~vG= (X -Xi)jj

i-l

where Go - G * fc, G is the Green fimction in the infinite domain and *

convolution operation. Substituting (2.2.8) into the Lagrangian equivalent
applying viscous splitting yields the discrete form of the evolution equations
field:

&
= Ui

dt

dm. T
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(2.2.9)

represents the

of (2.2.1) and
for the velicity

(2.2.10)
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i=l , .... Nv (2.2.12)

Equations (2.2. 10) through (2.2. 12) are vectorial ordinary differential equations which
can now be integrated in time to any order of accuracy to obtain the trajectory of the velicity
blobs and the evolution of the velicity.

2.3 The Euler Equations

The accuracy and convergence rate of the Lagrangian velicity method, ldce its vortex
element counterpart, is expected to be a fimction of grid resolution, the choice of the core
function and its radius, the order of space and time integrations, and how the velicity
distribution is initially projected onto the blobs. Some of these issues have been studied
numerically by Cortez (1995, in review) and Recchioni & Russo (1995). Convergence of the
method is studied theoretically by Benedetto (1996).

One severe drawback of the method is that the velicity has the same units as the
velocity, subsequently, the velocity field is evaluated using an integral formulation that is one
order more singular than the Biot-Savart integral used in vortex methods. In other words, the
velocity in the velicity method is in the same order as the velocity gradient in the vortex method,
which is one source of instability in 3-D vortex methods. Undoubtedly, the higher order
singularity of the velocity gradients in the velicity method will contribute to its instability
fi.uther. As a result, the solution is expected to be highly sensitive to the correct choice of the
core function, the core radius, and the spatial resolution and integration scheme. Benedetto
(1996) showed that in order to obtain abounded approximation of the velocity field, the Fourier
transform of the core function must be positive. Recchioni & Russo (1995) demonstrated, with
a simple example, how the solution blows up suddenly if a non-positive core function is used in
the calculations. Benedetto (1996) also obtained error estimates for the velocity field in the
infinity norm and showed its linear dependence on the core radius, as well as a term which is

1 _(w’4
proportional to — This suggests that a large number of velicity elements,

G6N7 08 “

subject to core overlap, may be necessary to obtain accurate solutions for short times. Cortez
(1995, in review) conducted a series of experiments in 2- and 3-D to assess the accuracy of the
velicity element method. He concluded that the initial grid refinement only delays the inevitable
numerical blow up. (The Fourier transform of the core function in his computations was
positive.) This is because as the flow evolves, the contour (or surface in 3-D) of the velicity
field experiences strong stretching and the velicity elements become sparsely distributed along
the contour (or the surface.) This leads to the loss of accuracy of the mid-point rule for spatial
integrations and the eventual blow up. Note that vortex simulations of shear flow experience
similar problems with sheet stretch. Curiously, even as the predictions begin to diverge from
the correct solution, the velicity method faithfully preserves the invariants of the flow until the
moment the spontaneous blow up occurs (Cortez, 1995, in review). Cortez (1995) proposed
two techniques to remedy the problem of blow up. The first is a grid refinement approach,



similar to the ideas used in the vorticity insertion techniques. In this case, when the velicity
magnitude grows beyond a preset maximum value the element is replaced by two equally-sized
elements, each having a velicity vector in the same direction as and with half the magnitude of
the original vector. This approach preserves linear impulse and has been shown to maintain
stability for longer times. However, the proliferation of the number of elements, especially in 3-
D, makes this method impractical. The second remedy is a re-gridding approach that exploits
the non-uniqueness of the velicity field representing the flow. In this case, rather than allowing
the field to stretch along its original surface, a new surface-minimiz”mg distribution of velicity is
constructed over the flow every few time-steps and the old elements are discarded. This
technique has the advantage of bounding the number of velicity elements. However, the
development of a generalized algorithm to identify a minimal surface in 3-D will require
complex mathematics (Chopp, 1993), and Cortez (1995) postponed it to future work.

2.4 The Diffusion Equations

The diffusion of the velicity variable can, in theory, be evaluated using any of the
methods discussed in Section 1.4. However, as discussed earlier, since the velocity field
obtained by the velicity method is one order more singular than that obtained by the vortex
method, it is essential to utilize methods that yield very high solution accuracy and rate of
convergence. To date, parametric investigations of the relative accuracy of various available
grid-tiee techniques for solving the velicity diffusion equation have not appeared in the
literature.

2.5 Wall Boundary Conditions

The grid-free velicity method has thus far been used mainly to simulate flow in
unbounded domains. However, recently, Summers & Chorin (1996) proposed a hybrid vortex-
velicity model in which they used the velicity variable to satis~ the no-slip boundary condition
and to simulate the flow within a thin region near the boundary, and used vorticity to simulate
the flow elsewhere.

Recall that the velicity variable has the attractive property that it conserves the invariants
of the flow and maintains the solenoidality of velocity and vorticity. Velicity or impulse is not a
unique variable and contains a gauge freedom which provides a degree of flexibility in
designing optimum algorithms. Summers & Chorin (1996) proposed two choices for the gauge$
and proceeded with the formulation of the algorithm for each choice.

In the first method the impulse vector was set normal to the wall. This is a natural
generalization of vortex methods and leads to an algorithm that prescribes the generation and
subsequent conservation of circulation. In this approach, the wall surface may be discretized
using a set of polygonal tiles. Then the magnitude of the tile-centered impulse vector may be
approximated as the line integral of the slip velocity around the tile divided by the height of a
very thin numerical boundary layer near the wall. An order of magnitude analysis reveals that
the dynamics of only the normal impulse are dominant (Summers & Chorin, 1996). Therefore,
once the normal impulse vectors are generated at the wall to satis~ the no-slip condition, they
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are diffused using the random walk method, convected, and stretched away from the boundary.
When a tile traverses the thin layer, it is converted to a vortex loop parallel to the wall with an
arbitrary combination of circulation and radius such that the volumetric impulse is conserved
(Summers & Chorin, 1996). Note that these loops are not unique. Summers& Chorin (1996)
opted to convert the impulse tiles into vortex filaments; however, one may design a method
based on spherical vortex elements instead of filaments. The feasibility of the first method was
demonstrated by Summers & Chorin (1996) for short times using the example of flow over a
sphere.

In the second method the impulse vector was set parallel to the wall. This algorithm
enforces the conservation of mornentu~ and it implies the creation of an impulse density at the
wall equal in magnitude and opposite in direction to the slip-flow there. An order of magnitude
analysis shows that the normal component of the velicity vector is negligible. Therefore, in this
case, the tile-centered velicity vectors parallel to the wall are set equal to the negative of the slip
velocity at the wall, and their evolution toward the flow interior is obtained from the equations
of motion in the direction parallel to the wall. Once a tile jumps out of the numerical boundary
layer it is converted into a vortex loop, such that its plane is oriented vertically to the wall and
normal to the direction of slip flow at the point of creation (Summers & Chorin, 1996). Note
that no line integrations are necessary in the second method and the creation principle is
localized. Furthermore, the vorticity created in this approach produces a more detailed picture
of the boundary layer than the first method (Summers & Chorin, 1996). The velicity method
appears to be a simple and efficient model for generating divergence-free vorticity at the walls.



SUMMARY

Lagrangian vortex element methods are techniques for the simulation of incompressible,
high Reynolds number, unbounded or bounded flows. The idea is to discretize the governing
equations of the fluid motion in its vorticity transport formulation, which is computationally
advantageous for the following reasons. Most vortex methods are grid-free and eliminate the
need for volumetric meshing of the fluid domain, which can be quite complicated and time-
consuming - especially for the complex deforming boundties of parachutes. Vortex methods
are almost free of numerical diflkion, which makes them particularly suitable for the simulation
of high Reynolds number flows. Vortex methods satis~ the far-field boundary conditions
exactly which, combined with the fact that vorticity is generally concentrated in relatively small
regions of the flow field, leads to substantial savings in computational resources as compared to
grid-based methods. Vortex methods are also naturally adaptable to massively parallel
computing.

The approach taken for discretizing the vorticity field defines the various categories of
vortex element methods, each with its advantages and drawbacks. The vortex filament method
discretizes the vorticity field using a collection of contiguous line segments or sticks. It
preserves the total vorticity, as well as linear and angular momenta. It also satisfies the
solenoidality of vorticity by construction, but only globally and not pointwise. The filament
method is an excellent tool for simulating inviscki unbounded 3-D flows. The vortex-lattice or
panel method is a closely related approach which uses a collection of contiguous, infinitesimally
thin panel segments to discretize the vorticity field. It is regularly used to model the wake
behind airfoils. Unfortunately, the filament and panel methods may not be used accurately for
viscous flow simulations.

Vortex monopoles or vortons, commonly referred to as vortex elements, use smoothed
monopoles to discretize the vorticity field. They are highly versatile and can, in principle, be
used to simulate unbounded or bounded flow at any Reynolds numbers. The accuracy of vortex
methods and their convergence to inviscid or viscous unbounded flows have been proved.
Additionally, smoothing fimctions with arbitrarily high order of accuracy have been provided in
the literature (Beale & Majda, 1985). A method for constructing smoothing functions that
allow the user to control the spectral accuracy of the discretization has also been proposed
(Humi, 1993).

The most commonly implemented vortex methods use isotropic spherical elements.
However, other variants have appeared in the literature as well. Marshall& Grant ( 1995a) have
developed an anisotropic method, which can be useful for simulating wake and boundary layer
flows. Hou (1992) has derived a formulation that uses point vortices, and he has demonstrated
that the predictions remain accurate for long times. Grant et al. (1995) are developing an
advancing tiont technique that uses Delaunay tetrahedralization to discretize the vorticity field.
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There are a few challenging issues that must be resolved before the fill potential of
vortex element methods can be realized. For example, vortex methods generally do not
preserve the basic invariants of the flow. Furthermore, they satisfy the solenoidality of vorticity
only approximately. Some variants of the method have been shown not to form a weak solution
of the governing equations. In this regard, Pedrizzetti (1992) argues that vortons not
representing a weak solution of the Euler equations has little bearing on the validity of the
method. Moreover, Greengard & Thomann (1988) and Pedrizzetti (1992) suggest that vortons
may predict the flow field poorly not because they do not preserve the invariants of the flow,
but because they are non-solenoidal! Numerical experiments by Winckelmans & Leonard
(1993) appear to support this conclusion. Additionally, results indicate that vortons
approximating a divergence-free vorticity field tend to preserve the invariant of the flow
automatically. Therefore, maintaining the solenoidality of the vorticity field is key to the
successful simulation of the flow using vortons. Pedrizzetti (1992) and Winckelrnans &
Leonard (1993) propose techniques for periodically reconstructing a divergence-free vorticity
field during the simulation. Wu et al. (1995) have formulated a projection technique to enforce
the solenoidality of the vorticity in bounded domains.

The velicity or magnetization or impulse method is a new formulation based on the
canonical Hamiltonian for the incompressible Euler equations and is valid in all space
dimensions. The Lagrangian velicity method shares the advantages of the Lagrangian vortex
element methods. It also preserves the invariance of the impulse, angular momentum helicity
density and energy in the discrete fo~ identically. Furthermore, it satisfies continuity and
maintains the solenoidality of vorticity, pointwise.

The velicity formulation lends itself naturally to the 3-D simulation and modeling of
turbulent flow. Buttke & Chorin (1993) argue that the vortex monopole representation of the
flow is not the optimal hrnework for applying statistical tools to the simulation of 3-D
turbulent flows. This is because vortons are only approximately solenoidal and allow numerical
errors to grow and change the asymptotic equilibria. Vortex filaments are solenoidal only
globally and not pointwise. This leads to difficulties with vortex merging and renormalization
theories (Chorin, 1993). In contrast, since impulse is conserved in the velicity formulation,
merging becomes an “effortless” process of combining velicity elements (Buttke & Chorin,
1993). This is usefid in removing small scale structures and reducing computational cost.

There are applications where the velicity method has been shown to be an excellent tool.
Problems of immersed boundaries with surface forces, such as elastic membranes, can be
modeled with the velicity variable since these represent dipoles and the velicity equations update
the dipole strengths appropriately (Cortez, 1995; Recchioni & Russo, 1995). However, the
velicity element method has been shown to be accurate for fixed, short times only. This is
because for certain problems, the velicity stretches without bound and its support base expands
out, leading to a sparse collection of velicity elements and eventual blow up of the predictions.
Certain remedies have been proposed (Cortez, 1995); however, they do not appear to be
practical for 3-D computations. The velicity method is a new technique and certainly time is
needed to accumulate more experience about its potential advantages and disadvantages with
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respect to the more established vortex method; and, more importantly, to propose remedies for
improving some of the issues that have been touched upon in the previous sections.

The following is a brief review of available methods for the grid-free simulation of
diffusion.

The random walk method is used extensively in Lagrangian vortex methods and there is
substantial evidence in the literature about its advantages and handicaps. It conserves
circulation exactly, but conserves the linear and angular moments only approximately. The
random walk method is noisy implying that longer runs and larger samples may be necessary to
average out the parasitic noise fi-om the solution. The smoothed random walk method
(Fogelson & Dillon, 1993) reduces the level of noise significantly however, it still requires a
large number of elements to achieve convergence. Therefore, although the random walk
method is inexpensive per vortex element, the total simulation time (controlled by the Biot-
Savart evaluations) may not be as competitive, considering the large number of elements that
are required to obtain convergence.

The core spreading method was introduced in this report for the sake of completeness
only. Clearly, it approximates the wrong equation and cannot be recommended. The corrected
core spreading method (Rossi, 1996) is a novel extension of the latter and is designed to
conserve the integral properties of the system. It offers the additional advantage of
circumventing viscous splitting. Selected tests have indicated the accuracy of the method
compared to known solutions and the random walk method. However, since it is fimdarnentally
a core spreading method, its accuracy is retained only by frequent splitting of the vortex
elements which causes the exponential growth of the number of elements.

The diffusion velocity method (Kempka & Strickland, 1993) is a relatively new concept
with no theoretical proof that the solutions approximate the Navier-Stokes equations correctly.
More importantly, the method is presently limited to 2-D flows only and the formulation has not
been extended to 3-D domains.

The particle strength exchange (Degond & Mas-Gallic, 1989a) and core function
differentiation (Fishelov, 1990b) methods are at present the most widely implemented
deterministic methods in vortex element simulations. The advantages of these methods are that
viscous splitting need not be used, and that the integral properties of the flow are conserved.
Furthermore, the convergence and accuracy of both methods have been established theoretically
as well as numerically, using a uniform distribution of elements. However, the accuracy of the
predictions diminishes severely as vortex elements become disordered due to local fluid effects.
The popular remedy is to iiequently project the vortex elements onto a uniform grid, which
introduces numerical diffMion into the computation. Furthermore, remeshing requires the
development of sophisticated grid generation techniques in order to handle the complexities of
the domain boundary. This defeats the purpose of using grid-free methods entirely! Lastly,
both methods are incapable of accounting for the expansion of the vorticity field automatically.
At present, the approach is to fill the boundaries of the expanding computational domain with
layers of new elements (with zero circulation) and to compute the exchange of vorticity among
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all elements including the newly added ones. Since there is no a priori information about the
location and fi-equency with which the elements must be added, the computations usually carry
along extra elements with zero strength, which adds unnecessary overhead to an already
expensive computation.

The free-Lagrange method (Russo & Strain, 1994) uses the location of the vortex
elements to construct Delaunay tetrahedral, which are then used to approximate the continuous
Laplacian of the diffusion with a discrete Laplacian. The method is deterministic and has been
shown to maintain longtime accuracy. It conserves circulation and the second moment, but no
information is available on the conservation of the linear moment. The disadvantage of the
method is that it has linear order accuracy at best, and the discrete Laplacian is only weakly
consistent to linear order and not pointwise consistent. Additionally, the generation of the
Delaunay tetrahedral for a large number of vortex elements may prove to be an expensive
overhead.

The vorticity redistribution method (Shankar & Van Domrnelen, 1996) maybe thought
of as a generalized grid-fke finite difference technique. By construction, all integral properties
of the flow are conserved. The convergence and accuracy of the method have been
demonstrated analytically as well as numerically. The solution is pointwise consistent and
accepts arbitrarily high order accuracy (although at a commensurate increase in cost.) The
algorithm is adaptive in the sense that it adds elements when and where new elements are
required, including the expanding front of the vorticity field. This approach does not use the
element locations as quadrature points; therefore, it is not plagued by the degradation of
accuracy caused by element disorder. Additionally, it does not use core functions; therefore, the
method is capable of resolving scales as low as the inter-element spacing! This results into a
respectable savings in the number of vortex elements that are necessary to resolve a particular
length scale. Unfortunately, the cost of evaluating the diffusion equation is equal to the cost of
evaluating the Biot-Savart integrals. However, if the total time of simulation is considered, the
vorticity redistribution method may be quite competitive. Consider, for example, the test
problem of impulsively started flow over a cylinder. For the same level of accuracy, the
vorticity redistribution method used 60,000 vortex element, whereas the particle strength
exchange mechanism used roughly 350,000 elements !

The following is a brief review of issues concerning the no-slip boundary condition.

The vortex sheet and Prandtl approximation models proposed by Chorin (1980) are the
most widely used algorithms for imposing the no-slip boundary condition and for computing the
vorticity dynamics near the boundary, respectively. This is primarily because of the simplicity
by which the algorithm can be implemented, but also because up until recently there were no
reliable grid-free alternatives. The Prandtl approximation is a cost-effective, yet accurate
method for evaluating the evolution of vorticity near the boundary, even in the presence of
separation, provided the solution from the boundary domain is matched properly with that of
the outer domain (Anderson & Reider, 1994). Another advantage of this model is that it is
grid-free. Its main disadvantages are (1) the use of infinitesimally thin sheets to discretize the



vorticity field in the numerical boundary layer, which is a poor approximation, and (2) the use of
the random walk method to simulate diffusion, which is noisy and converges slowly.

The deterministic sheet method by Bernard& Thomas (1995) was developed to address
the disadvantages of the previous method. It discretizes the vorticity field near the boundary
region using bricks or sheets with finite thickness and a piece-wise constant vorticity variation,
and it simulates diffusion deterrninistically using Fishelov’s ( 1990b) method. As expected, very
accurate results are obtained with this method. Utiortunately, because of the choice of the
diffusion scheme and discontinuous vortex sheets, the boundary domain must be re-sheeted
frequently to maintain solution accuracy and stability. Therefore, this approach is not a grid-
fiee method in a strict sense. If one has to resort to some indirect form of gridding to maintain
accuracy, then one may as well develop a grid-based algorithm near the boundary to fully utilize
some of its potential advantages, such as computational efficiency.

Strickland et al. (1996) did just that, and developed a grid-based algorithm to minimize
the number of fke vortex elements that are injected into the fluid domain. Convection of
vorticity is obtained by moving the grid points using the local velocity, and the diffusion is
simulated using the diffbsion velocity method. A high-order remapping scheme is used to
reduce numerical diffusion. Preliminary tests on commonly experienced boundary layer
problems verified the robustness of the scheme. It is worth noting here that the algorithm used
to reduce the number of vortex elements injected to the field is not unique to grid-based
methods, and a similar strategy can be implemented in grid-he methods (Gharakhani, 1993).

It must be emphasized that a straightforward extension of a 2-D algorithm to 3-D
cannot be expected to produce accurate and/or stable results for long times, because of the
fimdarnentally different (and more complicated) kinematics and dynamics of the 3-D flow.
Special care must be exercised to ensure that the vorticity vector remains divergence-free. This
implies that, at a minimum the normal component of vorticity and the divergence of the
vorticity flux must be zero at the wall (Casciola et al., 1996; Wu et al., 1995). Since the 3-D
vortex blob is non-solenoidal, it is necessary to project the incorrect vorticity onto a new
solenoidal vorticity to maintain the accuracy of the simulation (Wu et al., 1995).

To this end, the velicity variable method was formulated by Summers & Chorin (1996)
to ensure that the generated vorticity remains solenoidal near the boundary before it is injected
into the fluid domain. The algorithm is logically identical to the vortex sheet method and is,
therefore, easy to implement. Another attractive feature of the velicity variable is that it is not
defined uniquely, which allows one to design algorithms that are optimized for particular types
of problems. Summers & Chorin (1996) proposed two alternatives for satis@ng the no-slip
boundary condition; one which assigns the velicity vector at the wall parallel to the wall, and
another normal to it. The proposed methods enforce the conservation of momentum and
circulation, respectively, to generate vorticity at the wall. The capability of each method to
simulate the boundary layer flow accurately needs to be determined by a parametric study.

The algorithms discussed thus far are well-suited for simulating topologically simple
boundary layer problems, such as flow over a flat plate or a cylinder; however, their



implementation on the time-dependent deformable boundary of a collapsing parachute will be a
challenging task, to say the least. The vorticity generation and propagation scheme
implemented by Koumoutsakos et al. (1994) can in principle accommodate such a complex
geometry. The algorithm applies the boundary element or panel method to solve the unsteady
diffksion equation, and to diffuse the wall vorticity into a layer of vortex elements that are
placed adjacent to the boundary in the fluid domain. Therefore, the method is grid-free and it
does not rely on the Prandtl approximation near the boundary. The version implemented by
Koumoutsakos et al. (1994) is based on the particle strength exchange mechanism which
requires frequent regrinding. Nevertheless, the idea can in principle be used with other methods
which do not require regrinding.
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RECOMMENDATIONS

The simulation of the flow around the dynamically deforming geometry of parachutes at
high Reynolds numbers is very challenging, irrespective of the particulars of the computational
method used to perform the task. The selected approach has to be computationally flexible and
efficient, yet sufficiently accurate to capture the essential characteristics of the high Reynolds
number flow around a parachute, which involves a wide range of length scales attributed to the
thickness, the span, and the wake behind the parachute.

The vortex element or vorton method appears to be the most flexible alternative for
simulating such a flow. However, accurate and stable vorton simulations will be possible only if
the solenoidality of the vorticity field is enforced throughout the computation. The projection
method by Wu et al. (1995) for flow in bounded domains appears to be the proper tool for this.
The methods by Winckelmans & Leonard (1993), Gharakhani (1993), and Cottet (1996) are
potentially powerful schemes that must at least be experimented with for the special problem at
hand. Additionally, in order to optimize the accuracy of the computations for long times, it may
be useful to incorporate spectral core functions of the type proposed by Hurni (1993), and/or
develop a 3-D adaptive Biot-Savart integration technique similar to that proposed by Strain
(1996) for 2-D.

The solution of the diffusion equation can most accurately be obtained by the vorticity
redistribution method by Shankar & Van Domrnelen (1996). Furthermore, effective sub-grid
scale diffusion models will be necessary to dissipate hairpin vortices, which inevitably develop
during the simulation of nearly inviscid flows, and thus to curtail the explosive growth of the
number of vortex elements.

The selection of a scheme for the generation of vorticity, and its evolution toward the
fluid domain, is more difficult because of the lack of conclusive evidence about the accuracy of
the existing solution techniques in 3-D. Nevertheless, a velicity generation scheme similar to
that proposed by Summers & Chorin (1996) may be the most appropriate approach for this
problem. This is because the velicity preserves the invariants of the flow and the solenoidality
of the vorticity field. Additionally, element merging is extremely simple with the velicity
variable. This allows the use of a large number of elements to resolve the flow structure near
the boundary.

A potentially successful algorithm for simulating the flow around the parachute is
proposed here, which is based on a dynamic domain decomposition technique and hybrid
velicity and vorticity methods. In this approach, the computational domain is decomposed into
an interior domain, which is a box that contains the parachute, and a remaining exterior domain.
The position and the size of the box changes according to those of the parachute. The flow is
simulated using the velicity element method for the interior and the vortex element method for
the exterior. Velicity elements that jump into the exterior are converted into vortex elements.
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However, vortex elements that jump into the interior remain unchanged. The details of the
algoritm such as the optimum choice for the box or the best method to convert the velicity
elements to vortex elements, will have to be developed in the fhture.
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